
Design Patterns in C++
Structural Patterns

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 23, 2011

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 1 / 54

http://retis.sssup.it/~lipari


Introduction to Structural Patterns

Structural patterns are concerned with how classes and objects
are composed to for larger structures.
Two kinds of “composition”:

static composition though inheritance
A class functionality is extended by deriving a new class and
overloading polymorphic methods, or by adding new methods
A class can mix the functionality of two classes through multiple
inheritance
A class can implement multiple interfaces through interface
inheritance

dynamic composition through associations
an object holds a pointer to another object
an object delegates part of its functionality to another object
an object can be composed by several smaller objects in many
different ways

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 2 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 3 / 54



Motivation

We have implemented a toolkit to draw graphics objects
the base class is Graphic, then we have CompositeGraphic,and
Line, Polygon, etc.
(see the Composite example)

We would like to add a TextBox, but it is difficult to implement

So we decide to buy an off-the-shel library that implements
TextBox

However, TextBox does not derive from Graphic.
and we don’t have their source code

How to include it in our framework?

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 4 / 54



Options

We have two options
Implement a TextShape class that derives from Graphic and
from TextBox, reimplementing part of the interface
Implement a TextShape class that derives from Graphic, and
holds an object of type TextBox inside

These two represent the two options for the Adapter pattern

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 5 / 54



Multiple Inheritance option

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 6 / 54



Composition Option

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 7 / 54



Example

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 8 / 54



Another example

Suppose we are given the class:

class DocManager {
public:

...
void printDocument();
void saveDocument();
...

};

which is responsible for opening, closing, saving, and printing text
documents

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 9 / 54



Another example

Suppose we are given the class:

class DocManager {
public:

...
void printDocument();
void saveDocument();
...

};

which is responsible for opening, closing, saving, and printing text
documents
Now suppose we want to build a word-processing application:

Graphical user interface that allows, among other things, users to
save the file by clicking a Save button and to print the file by
clicking a Print button.
Details of saving and printing are handled by the class DocManager

Key problem: How to design class Button so that its instances
can collaborate with instances of class DocManager

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 9 / 54



Example – cont.

Observe: Two instances and one link:
“print button” object of class Button
“document manager” object of class DocManager
Button press should invoke printDocument() operation

Question: How might one design classes Button and
DocManager to support this link?

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 10 / 54



Bad design

class Button {
protected:

DocManager* target;
void monitorMouse() {

...
if (/* mouse click */) {

target->printDocument();
}
...

}
...

};

Why this is a bad design?

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 11 / 54



Comments

Observe: To invoke printDocument() operation, Button
needed to know the class (DocManager) of the target object.
However:

Button should not care that target is a DocManager
Not requesting information from target
More like sending a message to say: “Hey, I’ve been pressed!. Go
do something!”

Question: How can we design Button to send messages to
objects of arbitrary classes?;

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 12 / 54



Use interface class

class ButtonListener {
public:

virtual void buttonPressed(const string&) = 0;
};

This interface declares the messages that an object must be able
to handle in order to collaborate with a Button

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 13 / 54



A better design

class Button {
public:

Button(const string& lab) :
label(lab), target(0) {}

void setListener(ButtonListener* blis) {
target=blis;

}

protected:
string label;
ButtonListener* target;

void monitorMouse() {
...
if(/* mouse click */) {

if (target)
target->buttonPressed(label);

}
...

}
};

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 14 / 54



Collaborator

Collaborator: any object that implements the ButtonListener
interface

Collaborator must register interest in press events

What if DocManager is already written and tested and does not
implements interface ButtonListener?

Use the adapter interface

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 15 / 54



Collaborator

Collaborator: any object that implements the ButtonListener
interface

Collaborator must register interest in press events

What if DocManager is already written and tested and does not
implements interface ButtonListener?

Use the adapter interface

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 15 / 54



Advantages

Class Button very reusable
We can understand the Button–ButtonListener collaboration
with little knowledge of Button and no knowledge of DocManager

Example of separation of concerns

Clear mechanism for adapting arbitrary class to implement the
ButtonListener interface
Rather than thinking of a program as a sequence of steps that
compute a function We think of a program as comprising two
parts: initialization and then interaction

Initialization involves the allocation of objects and the assembly of
objects into collaborations;
Interaction involves the interaction of objects with other objects by
sending messages back and forth

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 16 / 54



Which structure to use?

Multiple inheritance:
Expose interfaces of the adaptee to clients
Allow the adapter to be used in places where an adaptee is
expected

Composition
Does not expose interfaces of the adaptee to clients (safer)
In places that an adaptee is expected, the adapter needs to provide
a function getAdaptee() to return the pointer to the adaptee
object.

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 17 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 18 / 54



Motivation

Suppose that a general concept can have more than one
alternative implementation

The window example, where there are different types of windows
(icon, dialogue, framed, etc.), and they can be implemented in
different windows managers
A communication channel can be implemented on top of several
protocols

The natural way to handle this situation is by using inheritance
However, it may sometimes happen that the same abstraction
must be extended across two or more orthogonal directions

In the case of the window manager, suppose that you can have
several OS platforms, and on each platform, several different
window classes
In the case of a communication system, two orthogonal concepts
are again the OS and the protocol

Using only inheritance leads to a multiplication of different classes

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 19 / 54



Separation of concerns

Inheritance is static:
The client will depend upon a specific platform
Whenever a client creates a window, it must select the correct class
depending on the platform (similar problem of the abstract factory)

Adding a new look-and-feel requires adding many different classes

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 20 / 54



Bridge pattern

Still use inheritance, but use a different class hierarchy for each
orthogonal extension

One class hierarchy for each different window type
One class hierarchy for each window manager

All operations on windows must be implemented in terms of
“basic” operations

These basic operations can have several different
implementations on the different window managers

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 21 / 54



UML Structure

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 22 / 54



An example

In this example, we show how to use the bridge to generalize the
type of connection, independently of the OS and of the protocol
(TCP or UDP)

The application has (soft) real-time constraints, and we would also
like to have error correction and retransmission when possible

Initially the application will run on a local network, later it may be
possible to transmit on a wide area network

The idea is that the user should be able to easily change from a
TCP to a UDP and vice versa

Also, the application must be portable across several OS and
RTOS

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 23 / 54



Net connections

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 24 / 54



Server

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 25 / 54



Extensions

The client is not totally independent from the protocol

TCP needs a “Server” on a passive socket, which returns a
NetConnection

while UDP can just wait for a message on a certain port of a
regular NetConnection
There are other ways to abstract from the OS

For example, the Facade pattern, which consists of an interface to
centralize all OS abstractions (threads, semaphores, etc.)
In such a case, the Bridge Pattern is simplified, but still useful,
because it decouples the protocol

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 26 / 54



Consequences

Decoupling interface and implementation
An implementation is not bound permanently to an interface
No compile-time dependencies, because changing an
implementation does not require to re-compile the abstractions and
its clients

Improved extensibility
Abstractions and implementers can be extended independently

Hiding implementation details
How to create, and who creates the right implementer object?

Use a factory object, that knows all implementation details of the
platform, so that the clients and the abstraction are completely
independent of the implementation

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 27 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 28 / 54



Composite pattern

We must write a complex program that has to treat several object
in a hierarchical way

Objects are composed together to create more complex objects
For example, a painting program treats shapes, that can be
composed of more simple shapes (lines, squares, triangles, etc.)
Composite objects must be treated like simple ones
Another example: a word processor, which allows the user to
compose a page consisting of letters, figures, and compositions of
more elementary objects

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 29 / 54



Composite pattern

We must write a complex program that has to treat several object
in a hierarchical way

Objects are composed together to create more complex objects
For example, a painting program treats shapes, that can be
composed of more simple shapes (lines, squares, triangles, etc.)
Composite objects must be treated like simple ones
Another example: a word processor, which allows the user to
compose a page consisting of letters, figures, and compositions of
more elementary objects

Requirements:
Treat simple and complex objects uniformly in code – move, erase,
rotate and set color work on all
Some composite objects are defined statically (wheels), while
others dynamically (user selection)
Composite objects can be made of other composite objects

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 29 / 54



Solution

All simple objects inherit from a common interface, say Graphic:

class Graphic {
public:

virtual void move(int x, int y) = 0;
virtual void setColor(Color c) = 0;
virtual void rotate(double angle) = 0;

};

The classes Line, Circle and others inherit Graphic and add
specific features (radius, length, etc.)

class CompositeGraphic
: public Graphic,

public list<Graphic>
{

void rotate(double angle) {
for (int i=0; i<count(); i++)

item(i)->rotate();
}

}

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 30 / 54



The solution – II

Since a CompositeGraphic is a list, it had add(), remove()
and count() methods

Since it is also a Graphic, it has rotate(), move() and
setColor() too

Such operations on a composite object work using a “forall” loop

Works even when a composite holds other composites – results in
a tree-like data structure

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 31 / 54



The solution – III

Example of creating a composite

CompositeGraphic *cg;
cg = new CompositeGraphic();
cg->add(new Line(0,0,100,100));
cg->add(new Circle(50,50,100));
cg->add(t); // dynamic text graphic
cg->remove(2);

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 32 / 54



UML representation

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 33 / 54



Participants

Component (Graphic)
declares the interface for objects in the composition
implements default behaviour for the interface common to all
classes, as appropriate
declares an interface for accessing and managing its child
components
(optional) defines an interface for accessing a component’s parent
in the recursive structure, and implements it if that’s appropriate

Leaf (Rectangle, Line, Text, etc.)
represents leaf objects in the composition. A leaf has no children
defines behaviour for primitive objects in the composition

Composite (Picture)
defines behaviour for components having children
stores child components
implements child-related operations in the Component interface

Client
manipulates objects in the composition through the Component
interface

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 34 / 54



Trade-off between transparency and safety

Although the Composite class implements the Add and Remove
operations for managing children, an important issue in the
Composite pattern is which classes declare these operations in
the Composite class hierarchy

For transparency, define child management code at the root of the
hierarchy. Thus, you can treat all components uniformly. It costs
you safety, however, because clients may try to do meaningless
things like add and remove objects from leaves

For safety, define child management in the Composite class.
Thus, any attempt to add or remove objects from leaves will be
caught at compile-time. But you lose transparency, because
leaves and composites have different interfaces

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 35 / 54



Composite for safety

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 36 / 54



Known uses

Document editing programs

GUI (a form is a composite widget)

Compiler parse trees (a function is composed of simpler
statements or function calls, same for modules)

Financial assets can be simple (stocks, options) or a composite
portfolio

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 37 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 38 / 54



Motivation

Sometimes we need to add responsibilities to individual objects
(rather than to entire classes)

For example, in a GUI, add borders, or additional behaviours like
scrollbar, to a widget

Inheritance approach
We could let the class Widget inherit from a Border class
Not flexible, because for any additional responsibility, we must add
additional inheritance
Not flexible because is static: the client cannot control dynamically
whether to add or not add the border

Composition approach
Enclose the component into another object which additionally
implements the new responsibility (i.e. draws the border)
More flexible, can be done dynamically
The enclosing object is called decorator (or wrapper)

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 39 / 54



Example

A TextView object which displays text in a window

TextView class has no scrollbars by default

we add a ScrollDecorator to attach scrollbars to a TextView
object

What if we also want a border?

Well, let’s use a BorderDecorator!

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 40 / 54



Example

A TextView object which displays text in a window

TextView class has no scrollbars by default

we add a ScrollDecorator to attach scrollbars to a TextView
object

What if we also want a border?

Well, let’s use a BorderDecorator!

b:BorderDecorator

component

s:ScrollDecorator

component

t:TextView

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 40 / 54



UML structure for Decorator

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 41 / 54



Description

VisualComponent is the the abstract class all components must
comply to

From it, many different component classes derive with specific
behaviours
One of these classes is the Decorator which does nothing but
wrapping another component and forwarding all requests to it

In the previous example, the Decorator class must forward all
requests of draw() to its component:

void Decorator::draw() {
component->draw();

}

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 42 / 54



Decorators internals

All decorators classes must derive from Decorator,
implementing the additional interface (scrollTo(),
drawBorder(), etc.)

The draw() function is overridden to add the additional behavior

void BorderDecorator::draw() {
Decorator::draw();
drawBorder();

}

what the client will see will be the interface of the
VisualComponent, plus the interface of the most external
decorator

The key property is the any decorator implements the same
interface of any other component

therefore, from the client point of view, it does not matter if an
object is decorated or not

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 43 / 54



Notes

When to use
To add responsibilities to individual object dynamically and
transparently
When extension by sub-classing is impractical

Don’t use it the component class has large interface
Implementation becomes too heavy (all methods must be
re-implemented by forwarding to the internal component

When there are many “decoration options” you may end up with a
lot of small classes

The library may become more complex to understand and to use
due to the large number of classes

Where it is used
In the Java IO library, the most basic classes perform raw
input/output
more sophisticated I/O though decorators (i.e.
BufferedInputStream, LineNumberInputStream, are all
decorators of InputStream)

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 44 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 45 / 54



Proxy

Provide a surrogate or placeholder for another object to
control access to it

Some times it is impossible, or too expensive, to directly access
an object

Maybe the object is physically on another PC (in distributed
systems)
In other cases, the object is too expensive to create, so it may be
created on demand

In such cases, we could use a placeholder for the object, that is
called Proxy

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 46 / 54



Example

Suppose that a text document can embed images

Some of these can be very large, and so expensive to create and
visualize

on the other hand the user wants to load the document as soon as
possible

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 47 / 54



Example

Suppose that a text document can embed images

Some of these can be very large, and so expensive to create and
visualize

on the other hand the user wants to load the document as soon as
possible

the solution could be to use a “similar object” that has the same
methods as the original image objects

the object will start loading and visualizing the image only when
necessary (for example, on request for draw()), and in the
meanwhile could draw a simple white box in its placeholder

it can also return the size of the image (height and width) that it is
what is needed to format the rest of the document

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 47 / 54



The structure

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 48 / 54



Generalization

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 49 / 54



Participants

Proxy (ImageProxy)
maintains a reference that lets the proxy access the real subject. Its
interface must be the same as the one of the RealSubject.
provides an interface identical to Subject’s so that a proxy can be
substituted for the real subject
controls access to the real subject and may be responsible for
creating and deleting it
other responsibilities depends on the kind of proxy

Subject (Graphic)
defines the common interface for RealSubject and Proxy so that a
proxy can be used anywhere a RealSubject is expected

RealSubject (Image)
defines the real object that the proxy represents

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 50 / 54



Applicability

Proxy is applicable whenever there is the need for a more
sophisticated reference to an object that a simple pointer

A remote proxy provides a local representative for an object in a
different address space
a virtual proxy creates an expensive object on demand (like in the
example)
a protection proxy controls access to the original object.
Protection proxies are useful when objects should have different
access rights
A smart reference is a replacement for a bare pointer (see
share_ptr or auto_ptr)
implement copy-on-write behaviour when copying large objects

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 51 / 54



Outline

1 Adapter pattern

2 Bridge

3 Composite pattern

4 Decorator

5 Proxy

6 Comparison

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 52 / 54



Comparison of structural patterns

Many of the patterns we have seen have very similar class
diagrams

Therefore, the structure is quite similar
the basic idea is to favour composition for extending functionality,
and use inheritance to make interfaces uniform, and this is why they
look similar
however, the intent of these patterns is different

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 53 / 54



Comparison of structural patterns

Many of the patterns we have seen have very similar class
diagrams

Therefore, the structure is quite similar
the basic idea is to favour composition for extending functionality,
and use inheritance to make interfaces uniform, and this is why they
look similar
however, the intent of these patterns is different

Adapter versus Bridge
Both promote flexibility by providing a level of indirection to another
object
both involve forwarding requests to this object from an interface
other than its own

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 53 / 54



Comparison of structural patterns

Many of the patterns we have seen have very similar class
diagrams

Therefore, the structure is quite similar
the basic idea is to favour composition for extending functionality,
and use inheritance to make interfaces uniform, and this is why they
look similar
however, the intent of these patterns is different

Adapter versus Bridge
Both promote flexibility by providing a level of indirection to another
object
both involve forwarding requests to this object from an interface
other than its own
the different is on their intent
Adapter tries to adapt an existing interface to work with other
classes; it is used after the class is available
Bridge provides a bridge to a potentially large number of
implementations; it is used before the classes are available

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 53 / 54



Composite / Decorator / Proxy

Composite and Decorator have similar recursive structure
Composite is used to group objects and treat them as one single
object
Decorator is used to add functionality to classes without using
inheritance
These intents are complementary
therefore, these patterns are sometimes used in concert

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 54 / 54



Composite / Decorator / Proxy

Composite and Decorator have similar recursive structure
Composite is used to group objects and treat them as one single
object
Decorator is used to add functionality to classes without using
inheritance
These intents are complementary
therefore, these patterns are sometimes used in concert

Decorator and Proxy are also similar
They both provide the same interface as the original object
However, Decorator is used to add functionalities; Decorators can
be wrapped one inside the other
Proxy is used to control access

G. Lipari (Scuola Superiore Sant’Anna) Structural patterns March 23, 2011 54 / 54


	Adapter pattern
	Bridge
	Composite pattern
	Decorator
	Proxy
	Comparison

