
Design Patterns in C++
Behavioural Patterns

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 13, 2011

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 1 / 59

http://retis.sssup.it/~lipari

What are Behavioural Patterns

Behavioural patterns describe patterns of message
communications between objects
Therefore, they are concerned with algorithms, rather than with
structures

Of course, behavioural patterns are strictly related to structural
patterns

Key observation: how the objects know about each other?

Main goal: decouple objects from each other to allow a dynamic
and flexible configurations of algorithms and methods

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 2 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 3 / 59

Motivation

We need to maintain consistency among (weakly-)related object
When something happens to an object, other objects must be
informed

Typical example in GUIs
The Document object must be informed when a button “Print” is
clicked, so that the print() operation can be invoked
The ViewPort object must be informed when the window is
resized(), so that it can adjust the visualization of the objects
We have already presented an example when presenting the
Adapter pattern: an object can “listen” to other objects changes

Participants:
An object changes its state (subject)
Another object wants to be informed (observer)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 4 / 59

UML Diagram

Subject is the interface for something to to be observed

Observer is thing that observes

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 5 / 59

Message sequence chart

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 6 / 59

Example

The user resizes a window:
every component of the window needs to be informed of a resize
operation (viewport, scrollbars, toolbars, etc.)
in this way, every object can synchronize its state with the new
window size

Solution:
The window can install observers
All components (viewport, scrollbar, etc.) can attach an observer to
the main window that is informed when a resize operation is under
way
The observer asks for the current size of the window, and invoke
methods on the objects to adjust their state (size)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 7 / 59

Consequences

Abstract coupling between subject and observer
all that a subject knows is that there is a list of observers, but it
does not know anything about the observers themselves
the observer instead must know the subjects

Broadcast communication
There can be many independent observers, with different purposes
and hierarchies
Example: resizing a window can affect the viewports inside the
window, the scrollbars, etc.

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 8 / 59

Consequences

Abstract coupling between subject and observer
all that a subject knows is that there is a list of observers, but it
does not know anything about the observers themselves
the observer instead must know the subjects

Broadcast communication
There can be many independent observers, with different purposes
and hierarchies
Example: resizing a window can affect the viewports inside the
window, the scrollbars, etc.

Unexpected updates
A seemingly innocuous operation on the subject may cause a
cascade of updates on the observers and their dependent objects,
many of them may not care about any update
This simple protocol does not tell the observer what change
happened to the subject (a resize? a move?)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 8 / 59

Update problems

Pull model
the subject sends nothing
the observer askes for details about the changes
equivalent to what we have already seen

Push model
the subject sends the observer detailed information about the
change (whether it wants it or not)
the observer can understand if he is interested in the change by
analysing this additional parameter

Specifying events
By complicating the protocol, it is possible to register to specific
aspects

onResize()
onMove(),
. . .

more efficient, but more complex interface

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 9 / 59

Extensions

It is possible to efficiently and effectively use templates for
extending as much as possible to usage of the observer pattern
the first extension we consider is to have an observer that wants
to observe different subjects

however, in the standard patterns, only one subject is possible
we could have different pointers inside the ConcreteObserver class,
however the update takes no parameter
to understand which subject has changed, we need to pass a
parameter to the update
we could pass a simple integer, 0 meaning the first subject, 1 the
second subject, and so on
however, the subject must know its number for the specific
observer; and the observer has to implement a switch case
not very scalable

My solution is to use one more class, that connects subject with
observer

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 10 / 59

UML diagram

See the code in observer example

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 11 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 12 / 59

Motivation

Consider a context-sensitive “help” for a GUI
the user can click on any part of the interface and obtain help on it

The help that is actually provided depends on
which part of the interface (button, menu, etc.)
the context (where the button is)

Example:
a button in a dialog box
a button in the main window

If no help can be found for that part, a more general help page is
shown

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 13 / 59

Motivation

Consider a context-sensitive “help” for a GUI
the user can click on any part of the interface and obtain help on it

The help that is actually provided depends on
which part of the interface (button, menu, etc.)
the context (where the button is)

Example:
a button in a dialog box
a button in the main window

If no help can be found for that part, a more general help page is
shown
The help should be organized hierarchically

From more general to more specific

The object that provides the help is not known to the object that
initiates the request for help

the button does not know which help object will handle the request,
as this depends on the context

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 13 / 59

Goals and requirements

Decouple senders and receivers

Gives multiple objects a chance to handle the request
Chain:

build a list of receivers
pass the request to the first receiver
if the request cannot be handled, pass it to the next receiver in the
chain

Consequences
Reduced coupling: the sender does not care which object handles
the request
Added flexibility in assigning responsibility : different responsibility
can be distributed to different objects
Receipt is not guaranteed : there is not guarantee that eventually
some object will handle the request

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 14 / 59

UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 15 / 59

Example Instance

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 16 / 59

Notes

Applicability
More than one object can handle a request, and the handler is not
known a priori
you want to issue a request to one of several objects without
specifying the receiver explicitly
the set of objects that can handle a request should be specified
dynamically

Implementation
Connecting successors: the Handler class itself usually maintains
a link to the successor. Also, it automatically forwards allow
requests by default if there is a successor.
Representing requests: usually represented in the method call itself
(i.e. handleHelp()). However, we could think of one or more
parameters to encode the specific request.
to simplify the passage of parameters, we could also encode them
into an object that is passed along the chain

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 17 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 18 / 59

Motivation

Consider a compiler that internally represents a program as an
abstract syntax tree

the compiler will take as input a text file containing the program
the parser component will read the file and build the syntax tree
then it performs syntax checking on the tree

for example, it checks that all used variables have actually been
defined, and that the type corresponds

it will also need to generate code
optionally, it can need to print the program in a nice formatted way

In general, on a complex structure, you may need to define
several distinct operations

The structure may consists of different types of nodes (see the
Composite pattern)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 19 / 59

Naive approach

Let’s define a method for each operation in the node itself

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 20 / 59

Naive approach

Let’s define a method for each operation in the node itself

Not correct. Why?

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 20 / 59

The problem

Does not scale: what if we want to implement one more operation
to visit the node?

We need to change all the Node classes

Also, we are doing many things to do in a single class
The Node class should care about the structure, and to provide a
generic interface to all types of nodes
Node typically implements a Composite pattern

What we need to do
Decouple visiting from Nodes.
Solution: use a different class to encapsulate the various visiting
operations

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 21 / 59

The Visitors

These classes take care of visiting the Nodes, and doing the
appropriate operations

each concrete visitor implements a different kind of visit

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 22 / 59

The Nodes to be visited

Now the Node class is much simples

it only need to provide a hook for allowing visitors to visit it

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 23 / 59

Generic UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 24 / 59

Message Sequence Chart

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 25 / 59

Applicability

Use the Visitor pattern when
an object structure contains many classes of objects with different
interfaces, and you want to perform operations on the elements of
the structure
many different operations needs to be performed on objects in a
structure, and you want to avoid putting such operations on the
objects (decoupling)
the classes defining the object structure rarely or never change

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 26 / 59

Consequences

Visitor makes adding new operations easier

Adding a new ConcreteElement is hard

similar to an Iterator, however the Iterator visits elements of
the same type, while visitor traverses structure of objects of
different types

Accumulating State: since the visitor is an object, while visiting it
can accumulate state, or cross-check the structure

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 27 / 59

Implementation techniques

The visitor is able to understand the type of the element it is
visiting using the technique called double dispatch.
Single dispatch:

the operation to be invoked depends on the type of the object (or of
the pointer), and on the parameter list
in object oriented slang, we say that it depends on the message
type (the method) and on the receiver (the object) type

Double Dispatch:
The operation that is invoked depends on the message type (the
method) and on two receivers
accept() is a double-dispatch operation, because the final method
that is called depends both on the visitor type and the element type
the technique used for the template observer is quite similar: which
operation is invoked depends on the message type (update), on the
receiver (the observer) and on the subject (parameter of the update)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 28 / 59

Who performs the visit?

Different techniques
The object structure
the Visitor
A separate object (an Iterator)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 29 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 30 / 59

Motivation

Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language

In many cases it is useful to define a small language to define
things that need to be expressed easily
Examples where a simple language may be useful

Configuration files for creating objects
List of complex parameters
Rules to configure filters, etc.

If the language is complex (for example, a scripting or
programming language), it is better to use classical tools like
parser generators
However, when we want to implement a simple thing, then it may
be useful to do it by hand in C
In the following example, we will assume to build a simple
interpreter for regular expressions

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 31 / 59

Example

Grammar rules

expression ::= literal | alternation | sequence | repetition |
’(’ expression ’)’

alternation ::= expression ’|’ expression
sequence ::= expression ’&’ expression
repetition ::= expression ’*’
literal :: = ’a’ | ’b’ | ’c’ | ... {’a’ | ’b’ | ’c’ | ... }*

Expression is the starting rule

Literal is a terminal symbol

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 32 / 59

Abstract Syntax Tree

To implement the previous grammar, we prepare a class for each
rule

each class derives from an abstract class

at the end of the parsing we must obtain an abstract syntax tree
that will represent the expression

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 33 / 59

UML representation

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 34 / 59

How the interpret works

The abstract syntax tree must be built by a parser (not part of this
pattern)
once the tree is built, we can use it in our program.

For example, we could pass the interpret a sequence of characters,
and it will tell us it the sequence respects the regular expression
we would also pretty-print the expression, or transform it into
another representation (for example a finite state machine)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 35 / 59

UML representation

A general UML representation is the following

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 36 / 59

Participants

AbstractExpression (RegularExpression)
it represents the abstract interface for the node in the tree

TerminalExpression (LiteralExpression)
Represents the leaf of the tree, cannot be further expanded

NonTerminalExpression (SequenceExpression,
AlternationExpression, etc.)

this class represents a rule in the grammar
it is also an intermediate node in the tree, can contain children

Context
Contains global information useful for the interpret

Client
builds the abstract syntax tree via a parser
calls the interpreter operation to carry on the interpretation of the
language

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 37 / 59

Consequences

It’s easy to change and extend the grammar
appropriate classes can be written, existing classes appropriately
modified

Easy to implement the grammar
Classes are easy to write and often their generation can be
automated by a parser generator

Complex grammars are hard to maintain
When the number of rules is large, you need a lot of classes
also, not very efficient to execute

Adding new ways to interpret expressions
Since you have the tree, you can do many things with it
by using a Visitor pattern, you can easily add new operations
without modifying the classes

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 38 / 59

Example of parser

In the code

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 39 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 40 / 59

Motivation

Sometimes it is necessary to issue requests to objects without
knowing anything about the operation being requested, or the
receiver of the request

Example: when pressing a button, something happens that is not
related or implemented to the Button class
In many cases, exactly the same operation can be performed by a
menu item, or by a button in a toolbar

We want to encapsulate commands into objects

This patterns is the OO equivalent of C callbacks
Other uses

Undo/redo of commands
Composing commands (macros)

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 41 / 59

UML example

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 42 / 59

Implementing macros

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 43 / 59

General UML structure

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 44 / 59

Undo/Redo

It is not always possible
The operation should be reversible
Need to add and undo() operation in the Command abstract class
The command may need to carry additional state of the receiver
inside
We need an history list (how far should we go with the history?)

Using prototype
We could use a Prototype pattern to create copies of commands,
customize with the internal state of the receiver, and then save the
copy on the history

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 45 / 59

Differences with callbacks

Commands are objects, not just functions
They can carry state information on the receivers
They can carry information on the history itself

The Invoker only needs to know the general interface of the
command (execute()), not the specific internal information (i.e.
parameters, etc.) which are decided at creation time

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 46 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 47 / 59

The State pattern

Allow an object to alter its behaviour when its internal state
changes. The object will appear to change its class.

This pattern is useful to implement simple state machines
The idea is to implement each state with a different class, and
each event with a different method
Consider a library to implement the TCP protocol

A TCPConnection can be in one of several different states
For example, the connection can be void, established, closing, etc.
the response to a request of open depends on the current state of
the connection: only if the connection is not yet established we can
open it

this behaviour can be implemented as follows:
An abstract class TCPState that implements a method for each
possible request
the derived classes represent the possible states
only some of them will respond to a certain request

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 48 / 59

Example

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 49 / 59

Applicability

Use the State pattern in one of the following cases
an object behaviour depends on its state, that will change at
run-time
operations have large, multi-part, conditional statements that
depend on the object state. This state is usually represented by
one or more enumerated constants

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 50 / 59

UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 51 / 59

Participants

Context (TCPConnection)
defines the interface of interest to clients
maintains an instance of a ConcreteState subclass that defines the
current state through a pointer to the abstract State class

State (TCPState)
defines and interface for encapsulating the behaviour associated
with a particular state of the Context

ConcreteState subclasses
each subclass implements a behaviour associated with a state of
the Context

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 52 / 59

Consequences

Localizes state-specific behaviour and partitions behaviour for
different states.

All behaviour associate with a particular state is concentrate into a
single class (ConcreteState).
new states and transitions can be easily added
the pattern then avoid large if/then/else conditional instructions
however, distributing information in state classes may not be
appropriate for complex behaviour, because it increases the
amount of interaction and dependencies between classes

it makes state transitions explicit.
a transition is a change in the state object, therefore is quite visible

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 53 / 59

Outline

1 Observer

2 Chain of responsibility

3 Visitor

4 Interpret

5 Command

6 State

7 Stategy

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 54 / 59

Strategy

Define a family of algorithms, encapsulate each one, and
make then interchangeable. Strategy lets the algorithms vary
independently from clients that use it

In general, it is useful to delegate an algorithm to a function,
instead of embedding it into the normal code

we make the algorithm general and reusable
we can easily change the algorithm by substituting the function

In object oriented programming, objects can be used instead of
functions
An example:

many algorithms exist for breaking a stream of text into lines
hard-wiring them into the class that uses them is undesirable,
because it goes against the single-responsibility principle
therefore, we could define an hierarchy of “function objects” that
behave like functions

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 55 / 59

UML diagram

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 56 / 59

Structure

SimpleCompositor implements a simple strategy that determines
linebreaks one at a time

TeXCompositor implements the TeX algorithm for finding
linebreaks. This strategy tries to optimize linebreaks globally, that
is one paragraph at a time

ArrayCompositor implements a strategy that selects breaks so
that each row has a fixed number of items. It’s useful for breaking
a collection of icons into rows, for example

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 57 / 59

Structure

SimpleCompositor implements a simple strategy that determines
linebreaks one at a time

TeXCompositor implements the TeX algorithm for finding
linebreaks. This strategy tries to optimize linebreaks globally, that
is one paragraph at a time

ArrayCompositor implements a strategy that selects breaks so
that each row has a fixed number of items. It’s useful for breaking
a collection of icons into rows, for example

A Composition maintains a reference to a Compositor object

we can change strategy both at compile time and at run-time
Why using classes instead of functions?

Objects can carry state, while functions can’t

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 57 / 59

In C++

In C++ you can define a method without name, through the
operator()

class MyFunctor {
...

public:
MyFunctor();
double operator() {...}
...

};

MyFunctor a;
...
double result = a();
// equivalent to
// result = a.operator();

You can also pass parameters to the operator, and overload it

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 58 / 59

Strategy as template parameters

Using this technique, a class can be easily parametrised through
a template instead than by inheritance

template <class Functor>
class Context {

Functor f;
public:

...
void operation() {

f();
}

};

G. Lipari (Scuola Superiore Sant’Anna) Behavioural patterns March 13, 2011 59 / 59

	Observer
	Chain of responsibility
	Visitor
	Interpret
	Command
	State
	Stategy

