
Design Patterns in C++
Safety to exceptions

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

April 15, 2011

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 1 / 39

Exception safety

Informally, “exception safety” means that a piece of software is
“well-behaved” with respect to exceptions

The program must remain in a consistent state when an exception
is raised (no memory leaks, no half modified structures, etc.)
Exception safety is always important,

but it is particularly important when writing libraries, because the
customer expects a well behaved library to not lose resources or
remain inconsistent when an exception is raised
the user expects to catch the exception and continue with the
program, so the data structures must remain consistent

Exception safety is particularly difficult when dealing with
templates, because we do not know the types, so we do not know
what can raise an exception

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 3 / 39

http://retis.sssup.it/~lipari

An example of unsafe code

// In some header file:
void f(T1*, T2*);

// In some implementation file:
f(new T1, new T2);

This can lead to a memory leak. Suppose that the evaluation
order is the following:

1 Memory is allocated for T1, then T1 is constructed
2 Memory is allocated for T2, then T2 is constructed
3 function f() is called

If the constructor of T2 throws an exception for whatever reason,
the memory for T1 is not deallocated, and T1 is not destroyed
Rule: don’t use two new operations in the same expression,
because some of them can leak in case of exception
notice that we do not know the exact order of execution of steps 1
and 2.
see example exc_function

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 4 / 39

Definition

There are three properties that have to do with exception safety
(Abrahams Guarantees)
Basic Guarantee: If an exception is thrown, no resources are leaked, and
objects remain in a destructible and usable – but not necessarily
predictable – state.

This is the weakest usable level of exception safety, and is appropriate
where client code can cope with failed operations that have already made
changes to objects’ state.

Strong Guarantee: If an exception is thrown, program state remains
unchanged.

This level always implies global commit-or-rollback semantics, including that
no references or iterators into a container be invalidated if an operation fails.

Nothrow Guarantee: The function will not emit an exception under any
circumstances.

It turns out that it is sometimes impossible to implement the strong or even
the basic guarantee unless certain functions are guaranteed not to throw
(e.g., destructors, deallocation functions).
As we will see below, an important feature of the standard auto_ptr is that
no auto_ptr operation will throw.

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 5 / 39

Problem

How to write a generic implementation of the Stack container that
is safe to exceptions?

We will solve the problem step by step (see “Exceptional C++”, by
Herb Sutter)

template <class T>
class Stack {
public:

Stack();
~Stack();
...

private:
T* v_;
size_t vsize_;
size_t vused_;

};

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 7 / 39

Requirements

first requirement: weak guarantee (no memory leak)

second requirement: strong guarantee (state is always
consistent)

third requirement: transparency (all exceptions must be
forwarded to the user of Stack)

Let’s start by writing the constructor and destructor

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 8 / 39

Constructor

template<class T>
Stack<T>::Stack() :

v_(0),
vsize_(10),
vused_(0)

{
v_ = new T[vsize_];

}

The implementation is correct because:
It is transparent (no exception is caught)
no memory leak
if an exception is thrown, Stack is not constructed, so everything
remains in consistent state

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 10 / 39

Memory leak?

v_ = new T[vsize_];

To understand why there are no memory leaks, let’s see how the
new operator works
The new operator

1 first allocates memory for 10 objects of type T
2 then, it invokes the default constructor of T 10 times

Both (1) and (2) can throw an exception
if (1) throws a bad_alloc (because we run out of memory), no
memory is allocated, everything works correctly
if any of the default constructors of T throw an exception the
previously constructed objects are destructed and the memory is
released

Warning: the destructors must not throw exceptions, otherwise it
is impossible to build anything that is safe to exceptions

We implicitly require that T::∼T() does not throw

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 11 / 39

Destructor

template<class T>
Stack<T>::~Stack()
{

delete v_[];
}

We just said that we require that T::∼T() will never throw an
exception

if this is true, also delete cannot throw, and also our destructor

therefore, this function respects the no-throw guarantee

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 12 / 39

Copy and assignment

We now write the copy constructor and the assignment operator

template <class T>
class Stack {
public:

Stack();
~Stack();
Stack(const Stack &);
Stack & operator=(const Stack &);
...

private:
T* v_;
size_t vsize_;
size_t vused_;

};

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 14 / 39

First try

To simplify the implementation, we first implement an helper
function that performs the copy, this will be used by the copy
constructor and by the assignment operator

template<class T>
T* Stack<T>::NewCopy(const T* src,

size_t srcsize,
size_t destsize)

{
assert(destsize >= srcsize);
T *dest = new T[destsize];
try {

copy(src, src+destsize, dest);
} catch (...) {

delete dest[]; // cannot raise exceptions
throw; // re-throws the same exception

}
return dest;

}

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 15 / 39

Analysis

...
T *dest = new T[destsize];
...

If it throws an exception, the rest of the function is not executed, all
memory is correctly deallocated (as in the constructor case)

try {
copy(src, src+destsize, dest);

} catch (...) {
delete dest[]; // cannot raise exceptions
throw; // re-throws the same exception

}

If the copy throws an exception (due to the assignment operator of
T) we catch it, delete all memory, and re-throw (for transparency)

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 16 / 39

Assignment

template<class T>
Stack<T>& Stack<T>::operator=(const Stack<T>&other)
{

if (this != other) {
T* v_new = NewCopy(other_v, other.vsize_, other.vsize_);
delete v_[];
v_ = v_new;
vsize_ = other.vsize_;
vused _ = other.v_used_;

}
return *this;

}
}

If NewCopy throws, nothing else is changed

all other instructions cannot throw (they operate on std types)

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 17 / 39

Push and pop implementation

We need extra care here. Suppose initially that we have the
following prototype:

template <class T>
class Stack {
public:

Stack();
~Stack();
Stack(const Stack &);
Stack & operator=(const Stack &);
size_t Count() const { return vused_; }
void Push(const T &);
T Pop();

private:
T* v_;
size_t vsize_;
size_t vused_;

};

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 19 / 39

Push

Again, let’s first operate on a temporary, then we “commit” at the
end

template<class T>
void Stack<T>::Push(const T& t)
{

if (vused_ == vsize_) {
size_t vsize_new = vsize_ * 2 + 1;
T* v_new = NewCopy(v_, vsize_, vsize_new);
delete v_[];
v_ = v_new;
vsize_ = vsize_new;

}
v_[vused_] = t;
++vused_;

}

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 20 / 39

Pop is a problem

template<class T>
T Stack<T>::Pop()
{

if (vused_ == 0) {
throw "Pop from an empty stack";

} else {
T result = v_[vused_ - 1];
-- vused_;
return result;

}
}

This function looks correct, but unfortunately has an hidden problem

Stack<string> s;
...
string s2;
s2 = s.Pop();

If the last copy fails, we extracted an element, but this will never reach
destination
we lost an element!

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 21 / 39

Two solutions

We can change the Pop() function in two ways:

first solution

template<class T>
void Stack<T>::Pop(T &result)
{

if (vused_ == 0) {
throw "Pop from an empty stack";

} else {
result = v_[vused_ - 1];
-- vused_;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 22 / 39

STL solution

Second solution is to add a Top() function, and let Pop() only
remove the element, without returning it

template<class T>
void Stack<T>::Pop()
{

if (vused_ == 0)
throw "...";

else -- vused_;
}

template<class T>
T Stack<T>::Top()
{

if (vused_ == 0)
throw "...";

else return v_[vused_ - 1];
}

This is the way chosen by the STL implementation of stack and
other containers

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 23 / 39

What we require

Let’s see what we require to class T for the Stack to work properly
1 A default constructor
2 a copy constructor
3 an assignment operator
4 a destructor that does not throw

we can do better than this, namely remove requirements 1 and 3

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 24 / 39

Remove the try/catch block

We can remove the try/catch block in the NewCopy by using a different
technique

This technique is quite general and it is based on the pimpl pattern, plus a
two-phase structure (do the work, then commit at the end)
it can be reused in you code quite easily

Let’s start by moving all implementation in a separate class

template<class T>
class StackImpl {
public:

StackImpl(size_t size=0);
~StackImpl();
void Swap(StackImpl &other) throw();

T *v_;
size_t vsize_;
size_t vused_;

private:
StackImpl(const StackImpl &);
StackImpl& operator=(const StackImpl &);

};

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 26 / 39

Constructor

template<class T>
StackImpl<T>::StackImpl(size_t size):

v_(0), vsize_ (size), vused_(0)
{

if (size > 0) v_ = operator new(sizeof(T)*size);
}

The operator new only allocates memory, but it does not call
the constructor of T

That’s quite different from calling new T[size_]
therefore, no object of T is built
if operator new throws bad_alloc, the object is not built and
we are safe

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 27 / 39

The placement operator new

Before continuing we need to analyse again the process of
dynamically creating an object
a call new T can be divided into two parts:

1 Memory allocation
2 Construction of the object on the specific address

Step (1) is performed by the operator new that we have just
used

Step (2) is performed by the placement operator new

T *p = operator new(sizeof(T)); // step 1
new (p) T(); // step 2

// the two steps above are equivalent to
// p = new T;

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 29 / 39

std::construct() and std::destroy()

The STL library provides two nice wrappers for using such operators;

template<class T1, class T2>
void construct(T1* p, const T2& value)
{

new (p) T1(value);
}

template<class T>
void destroy(T* p)
{

p->~T();
}

template<class FwdIter>
void destroy(FwdIter first, FwdIter last)
{

while (first != last) {
destroy(first);
++first;

}
}

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 30 / 39

Destructor

template<class T>
StackImpl<T>::~StackImpl()
{

destroy(v_, v_+vused_);
operator delete(v_);

}

destroy() calls all destructors for vused_ objects

destroy() cannot raise any exception

operator delete is the dual of operator new: it just frees
the memory (without calling any destructor)

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 31 / 39

The Swap function

Now we can continue by looking at a very important function

template <class T>
void StackImpl<T>::Swap(StackImpl &other) throw()
{

swap(v_, other.v_);
swap(vused_, other.vused_);
swap(vsize_, other.vsize_);

}

Here we are only swapping pointers or size_t members, there is
no function call, so no exception is possible

this function swaps the two internal representations of Stack

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 32 / 39

Stack class

Now we are ready to implement the Stack class

template <class T>
class Stack : private StackImpl<T>
{
public:

Stack(size_t size = 0);
~Stack();
Stack(const Stack&);
Stack& operator=(const Stack&);
size_t Count() const;
void Push(const T&);
T& Top();
void Pop();

};

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 34 / 39

Constructor and destructor

template<class T>
Stack<T>::Stack(size_t size) : StackImpl<T>(size)
{
}

template<class T>
Stack<T>::~Stack()
{}

The destructor of StackImpl is automatically called, and Stack has
nothing to destruct (we could also remove the definition, because
the compiler provides a standard one for us)

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 35 / 39

Copy constructor

template<class T>
Stack<T>::Stack(const Stack<T>& other) :

StackImpl<T>(other.vused_)
{

while(v_used_ < other.vused_) {
construct(v_ + vused_, other.v_[vused_]);
++vused_;

}
}

StackImpl constructor can raise an exception
Nothing bad can happen

A copy constructor of T can raise an exception
In that case, the destructor of StackImpl will destroy exactly all
objects that have been created (see ∼StackImpl())

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 36 / 39

Assignment operator

template<class T>
Stack<T>& Stack<T>::operator=(const Stack<T>& other)
{

Stack<T> temp(other); // constructs a temporary copy
Swap(temp); // swaps internal implementations
return *this; // temp will be destroyed

}

If the copy constructor fails, nothing bad happens

the Swap cannot throw

It follows that this is safe to exceptions

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 37 / 39

Push

template<class T>
void Stack<T>::Push(const T& elem)
{

if (vused_ == vsize_) {
Stack<T> temp(vsize_*2+1);
while (temp.Count() < vused_)

temp.Push(v_[temp.Count()]);
temp.Push(elem);
Swap(temp);

} else {
construct(v_ + vused_, elem);
++vused_;

}
}

Discuss why this is safe

Push and Pop did not change

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 38 / 39

A general technique

It turns out that this is a general technique
Put all implementation in a inner class
Your class will have a pointer to the implementation, or derive
privately from the implementation
do all the work on a copy
when everything is safe, swap the pointers (cannot throw
exceptions)

Exercise: Write the Stack implementation using the pimpl idiom
instead of the private inheritance

G. Lipari (Scuola Superiore Sant’Anna) Exception Safety April 15, 2011 39 / 39

	Exception safety
	A safe stack
	Constructor and destructor
	Copying and assigning
	Push and pop

	An alternative implementation
	Placement operator new
	Implementing Stack

