
Design Patterns in C++
Concurrency

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

April 29, 2011

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 1 / 50

Threads

a concurrent program consists of many “flows” of executing code
each “flow” is called thread

threads can execute in parallel (if enough processors are available)
or alternate on processors depending on a scheduling algorithm

a process is a set of threads and a (private) memory address
space that contains all variables, the stacks, etc. (i.e. the program
state)

threads belonging to the same process share the same memory
threads belonging to different processes can only communicate
with each other through IPC (inter-process communication
mechanisms, like pipes, sockets, etc,)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 3 / 50

http://retis.sssup.it/~lipari

Mutual Exclusion Problem

We do not know in advance the relative speed of the threads
hence, we do not know the order of execution of the hardware
instructions

Example: incrementing variable x
incrementing x is not an atomic operation
atomic behaviour can be obtained using interrupt disabling or
special atomic instructions

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 4 / 50

Example 1

/* Shared memory */
int x;

void *threadA(void *)
{

...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}

Bad Interleaving:

...
LD R0, x (TA) x = 0
LD R0, x (TB) x = 0
INC R0 (TB) x = 0
ST x, R0 (TB) x = 1
INC R0 (TA) x = 1
ST x, R0 (TA) x = 1
...

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 5 / 50

Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {
a = a + 1; b = b +1;

}
void mult() {
b = b * 2; a = a * 2;

}
} obj;

Consistency:
After each operation, a == b

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}

Resource in a non-consistent state!!

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 6 / 50

Consistency

for any resource, we can state a set of consistency properties

a consistency property Ci is a boolean expression on the values of
the internal variables
a consistency property must hold before and after each operation
it does not need to hold during an operation
if the operations are properly sequentialized, the consistency
properties will always hold

formal verification

let R be a resource, and let C(R) be a set of consistency properties
on the resource
C(R) = {Ci}
A concurrent program is correct if, for every possible interleaving of
the operations on the resource, ∀Ci ∈ C(R), Ci holds.

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 7 / 50

Producer / Consumer model

mutual exclusion is not the only problem

we need a way of synchronise two or more threads

example: producer/consumer

suppose we have two threads,
one produces some integers and sends them to another thread
(PRODUCER)
another one takes the integer and elaborates it (CONSUMER)

Producer Consumer

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 8 / 50

Implementation with the circular array

Suppose that the two threads have different speeds
for example, the producer is much faster than the consumer
we need to store the temporary results of the producer in some
memory buffer
for our example, we will use the circular array structure

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 9 / 50

Producer/Consumer implementation

struct CA qu;

void *producer(void *)
{

bool res;
int data;
while(1) {

<obtain data>
while (!insert(&qu, data));

}
}

void *consumer(void *)
{
bool res;
int data;
while(1) {

while (!extract(&qu, &data));
<use data>

}
}

Problem with this approach:
if the queue is full, the producer waits actively
if the queue is empty, the consumer waits actively

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 10 / 50

A more general approach

we need to provide a general mechanism for synchonisation and
mutual exclusion

requirements

provide mutual exclusion between critical sections

avoid two interleaved insert operations
(semaphores, mutexes)

synchronise two threads on one condition

for example, block the producer when the queue is full
(semaphores, condition variables)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 11 / 50

The POSIX standard

is an IEEE standard that specifies an operating system interface

the standard extends the C language with primitives that allow the
implementation of concurrent programs
POSIX distinguishes between the terms process and thread

a process is an address space with one or more threads executing
in that address space
a thread is a single flow of control within a process
every process has at least one thread, the “main()” thread; its
termination ends the process
all the threads share the same address space, and have a separate
stack

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 13 / 50

The Linux pthread library

the pthread primitives are usually implemented into a pthread
library

all the declarations of the primitives cited in these slides can be
found into sched.h, pthread.h and semaphore.h

use man to get online documentation

when compiling under gcc & GNU/Linux, remember the
-lpthread option

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 14 / 50

Thread creation

a thread is identified by a C function, also called body :

void *my_thread(void *arg)
{

....
}

a thread starts with the first
instruction of its body

the threads ends when the body
function returns

a thread can be created using the following primitive

int pthread_create(pthread_t *ID,
pthread_attr_t *attr,
void *(*body)(void *),
void * arg);

pthread_t is the type that represents the thread ID
pthread_attr_t is the type that represents the parameters of
the thread
arg is the argument passed to the thread body when it starts

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 15 / 50

Thread attributes

thread attributes specify the characteristics of a thread
detach state (joinable or detached)
stack size and address
scheduling parameters (priority, ...)

attributes must be initialized and destroyed

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

a thread can terminate itself by calling

void pthread_exit(void *retval);

when the thread body ends after the last “}”, pthread_exit() is
called implicitly

exception: when main() terminates, exit() is called implicitly,
which terminates the whole process! (and all threads in it)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 16 / 50

Thread joining

each thread has a unique ID

the thread ID of the current thread can be obtained using

pthread_t pthread_self(void);

two thread IDs can be compared using

int pthread_equal(pthread_t thread1, pthread_t thread2);

a thread can wait the termination of another thread using

int pthread_join(pthread_t th,void **thread_return);

it gets the return value of the thread or PTHREAD_CANCELED if the
thread has been killed

by default, every task must be joined

the join frees all the internal resources (stack, registers, and so on)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 17 / 50

Detaching

a thread which does not need to be joined must be declared as
detached.
2 ways:

the thread is created as detached using

pthread_attr_setdetachstate(...);

the thread becomes detached by calling pthread_detach() from
its body

joining a detached thread returns an error

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 18 / 50

Killing a thread

a thread can be killed by calling

int pthread_cancel(pthread_t thread);

when a thread dies its data structures will be released
by the join primitive if the thread is joinable
immediately if the thread is detached

there are two different behaviours:
deferred cancellation: when a kill request arrives to a thread, the
thread does not die. The thread will die only when it will execute a
primitive that is a cancellation point. This is the default behaviour of
a thread.
asynchronous cancellation: when a kill request arrives to a
thread, the thread dies. The programmer must ensure that all the
application data structures are coherent.

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 19 / 50

Cancellation state

the user can set the cancellation state of a thread using:

int pthread_setcancelstate(int state,int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

the user can protect some regions providing destructors to be
executed in case of cancellation

int pthread_cleanup_push(void (*routine)(void *), void *arg);
int pthread_cleanup_pop(int execute);

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 20 / 50

Cancellation points

the cancellation points are primitives that can potentially block a
thread; when called, if there is a kill request pending the thread
will die

void pthread_testcancel(void);
sem_wait, pthread_cond_wait, printf and all the I/O
primitives
pthread_mutex_lock, is NOT a cancellation point

a complete list can be found into the POSIX Std

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 21 / 50

Cleanup handlers

the user must guarantee that when a thread is killed, the
application data remain coherent

the user can protect the application code by using cleanup handlers
a cleanup handler is an user function that cleans up the application
data they are called when the thread ends and when it is killed

void pthread_cleanup_push(void (*routine)(void *), void *arg);
void pthread_cleanup_pop(int execute);

they are pushed and popped as in a stack (in LIFO order)

if execute != 0 the cleanup handler is called when popped

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 22 / 50

Semaphores

a semaphore is a counter managed with a set of primitives
it is used for

synchronization
mutual exclusion

POSIX Semaphores can be
unnamed (local to a process)
named (shared between processed through a file descriptor)

the sem_t type contains all the semaphore data structures

initialization

int sem_init(sem_t *sem, int pshared, unsigned int value);

pshared is 0 if sem is not shared between processes

destroying the semaphore

int sem_destroy(sem_t *sem)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 24 / 50

Wait and post

Wait operation:

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

if the counter is greater than 0, the thread decrements the counter
and continues, otherwise it blocks
sem_trywait never blocks, but returns error
sem_wait is a cancellation point

int sem_post(sem_t *sem);

if a thread is blocked, unblocks it, otherwise it increments the
counter

int sem_getvalue(sem_t *sem,int *val);

it simply returns the semaphore counter

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 25 / 50

Mutex description

a mutex can be considered as a binary semaphore used for
mutual exclusion

with the restriction that a mutex can be unlocked only by the thread
that locked it

mutexes also support some RT protocols
priority inheritance
priority ceiling

mutex initialization and destruction

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 27 / 50

Attributes

You must first create (and later destroy) a mutex_attr data
structure

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

To set a protocol:

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int prot);

where prot can be protocol can be PTHREAD_PRIO_NONE,
PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT

in the last case, you need to set the ceiling:

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int c);

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 28 / 50

Lock and unlock

To lock, lock without blocking and unlock:

int pthread_mutex_lock(pthread_mutex_t *m);
int pthread_mutex_trylock(pthread_mutex_t *m);
int pthread_mutex_unlock(pthread_mutex_t *m);

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 29 / 50

Condition variables

condition variables are used to enforce synchronization between
threads

a thread into a mutex critical section can wait on a condition variable
when waiting, the mutex is automatically released and locked again
at wake up
the synchronization point must be checked into a loop!

A condition variable has type pthread_cond_t, and must be
initialized before its use:

int pthread_cond_init(pthread_cond_t *c, pthread_cond_attr *a);

and destroyed when it is not used anymore

int pthread_cond_destroy(pthread_cond_t *c);

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 31 / 50

Waiting for a condition

When we want to block a thread on a condition variable we call:

int pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);

Every condition variable is always linked to a mutex
releases the mutex
blocks the thread on the condition variable queue
acquires the mutex

Note con cancellations:
pthread_mutex_lock() is not a cancellation point, while
pthread_cond_wait() is.
when a thread is killed while blocked on a condition variable, the
mutex is locked again before dying
therefore, an appropriate cleanup function must be used to protect
the thread from the cancellation

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 32 / 50

Signaling a condition

To wake up a blocked thread on a condition:

int pthread_cond_signal(pthread_cond_t *c);

to wake up all thread blocked on a condition:

int pthread_cond_broadcast(pthread_cond_t *c);

if no thread is blocked, these functions have no effect whatsoever

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 33 / 50

Advantages of OO

We have seen POSIX, one of many possible interfaces
Microsoft Windows has a completely different interface
In RTOS for embedded systems, the situation is actually worse as
there are many different API, one for each kind of OS

Object Oriented programming brings many advantages wrt C
language

Achieve a higher degree of re-usability, separation of concerns, less
dependencies, etc.
with less and cleaner code

For example, it is possible to extend and re-use implementation by
using inheritance and polymorphism
Also, the compiler performs many additional checks

avoids overuse of #define and other pre-processor directives
reduces the amount of void * pointers
code is less error-prone

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 35 / 50

Independence from the platform

One important use of the Object Oriented approach is to reduce
the amount of dependencies from the underlying Operating
System

Many different operating systems use different APIs to provide
services
for example mutex (pthread_mutex_t in Posix,
CRITICALSECTION in Windows, etc.)
they also have different parameters
However, the provided functionalities are quite similar

We can abstract the underlying API with a unique interface
Our code will depend only in the common abstract APIs
We can select the platform API at compile time with a simple switch

of course this can be done also in C
However, we would need many #define in the code

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 36 / 50

Boost threads

We will study one such particular OO library that wraps threads,
locks and concurrency controls in one library

The library is portable across many different OS
It is a candidate to be included in the next C++0x standard

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 37 / 50

Scoped locking

the goal is to simplify the code for locking and unlocking mutex
inside functions

Usually the lock is acquired at the beginning of the function and
released at the end
however, the function may have many different return points
also, exceptions may be raised by other functions

therefore, it is quite easy to forget to release the mutex

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 39 / 50

Example

the following code contains two stupid errors

void myfun() {
lock.acquire();
...
if (cond1) return;

g(); // may throw and exc.

lock.release();
}

error 1: the lock is not released

error 2: an exception may be
thrown, and the lock will not be
released

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 40 / 50

Solution

Use the RAII techniques (Resource Acquisition Is Initialisation)
The lock is wrapped inside another object called Guard
the only purpose of Guard is to guarantee that the lock is released
when Guard goes out of scope
to do this, Guard acquires the lock in its constructor, and releases it
in the destructor

class Guard {
Lock &lock;

public:
Guard(Lock &l) : lock(l) {

lock.acquire();
}
~Guard() {

lock.release();
}

};

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 41 / 50

Example, correct

void myfun() {
Guard g(lock);
...
if (cond1) return;

g(); // may throw and exc.
}

The Guard is destructed automati-
cally

Even when an exception is thrown

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 42 / 50

Some little problems

Of course, the user should access the mutex only through the guard
in particular, she should not release the lock accessing it directly
if releasing the lock in the middle of the function is necessary, it may be
the case to add methods acquire and release also in the Guard
class

class Guard {
Lock &lock;
bool owner;

public:
Guard(Lock &l) : lock(l), owner(false) {

acquire();
}
void acquire() {

if (!owner) { lock.acquire(); owner = true; }
}
void release() {

if (owner) { lock.release(); owner = false; }
}
~Guard() { release(); }

};

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 43 / 50

Deadlock

This pattern can cause a deadlock is a function recursively calls
itself

This can be solved putting a check into the Lock class
before acquiring the lock, the function check is the lock is already
owned by the same thread
another solution is to divide interface methods (that acquire the
lock) and implementation methods (which do not acquire the lock)
interface methods are public and can only be called from outside
implementation methods are private or protected, and can only be
called by implementation methods

Mutex objects should be declared mutable in C++, to allow const
methods to acquire the lock

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 44 / 50

Configuring the lock strategy

It may be useful to configure a class to use one of many different
lock mechanisms

No locking at all, if the class is used by one single thread
a simple mutex
a recursive mutex to avoid self-deadlock
a reader-writer lock

in any case, we would like to write the class code once and
configure with different locks
we can then apply the strategy pattern

Locking is a strategy that is delegated to another class

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 46 / 50

Using polymorphism

In this case, we assume that all Lock classes belong to a
hierarchy and that methods acquire() and release() are
virtual methods

class MyClass {
mutable Lock *lock;

public:
MyClass(Lock *l) : lock(l) {...}

void func() {
Guard g(*lock);
...

}
};

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 47 / 50

Using templates

In this case, the type of lock is a template parameter

of course, we need the Guard to be a template with the lock type
as template parameter

template <class LOCK>
class MyClass {

mutable LOCK lock;
public:

MyClass () : lock() {}

void func() {
Guard<LOCK> g(lock);
...

}
};

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 48 / 50

The Null mutex

Here is an example of Null Mutex

this can be used when we want to use the class for one thread
only

class NullMutex {
public:

NullMutex() {}
~NullMutex() {}
void acquire() {}
void release() {}

};

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 49 / 50

Polymorphism or template?

We use polymorphism when we want to be flexible at run-time

we use templates when we want to be flexible just at compile time

therefore, polymorphism is more flexible, but errors can only be
checked at run-time

on the other end, templates are “safer” because the compiler
checks everything at compile time, however, they are less flexible

for example, when different objects of the same class need to
have different locking strategies, polymorphism is more adequate
(all objects will have the same type)

G. Lipari (Scuola Superiore Sant’Anna) Concurrency April 29, 2011 50 / 50

	Basics of concurrency
	Concurrency with POSIX threads
	Semaphores
	Mutexes
	Condition variables

	The object oriented approach
	Scoped Locking
	Strategized locking

