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Abstract— When executing different real-time applications on
a single processor system, one problem is how to compose these
applications and guarantee at the same time that their timing
requirements are not violated. A possible way of composing
applications is through the resource reservation approach. Each
application is handled by a dedicated server that is assigned a
fraction of the processor. Using this approach, the system can be
seen as a two-level hierarchical scheduler. A considerable amount
of work has been recently addressed to the analysis of this kind
of hierarchical systems. However, a question is still unanswered:
given a set of real-time tasks to be handled by a server, how to
assign the server parameters so that the task set is feasible? In
this paper, we answer to the previous question for the case of
fixed priority local scheduler by presenting a methodology for
computing the class of server parameters that make the task set
feasible.

I. INTRODUCTION

Thanks to the recent advances in the field of computer
architectures, computers are getting faster and faster. It is now
possible to concurrently execute different real-time applica-
tions in the same system. In this paper, an application is a set
of concurrent tasks that implement a software program.

The motivation for executing different applications in the
same system is in cost reduction and in the re-use of legacy
applications on new, faster systems. This trend can be observed
both in the general purpose computer area and in the embedded
system area.

When executing many real-time applications in the same
system, the question is how to schedule these applications and
guarantee at the same time that their timing requirements are
not violated. One simple way to do composition is to use a
unique scheduling paradigm for the whole system and design
all applications according to the chosen paradigm. In this way
it is possible to check the schedulability of whole the system
by using already existing schedulability analysis tools.

However, sometime it is necessary to use an already im-
plemented application “as it is”, without going back to the
design phase. If an application is already working well on an
old slower processor, it is less expensive to move it on the new
faster processor without changing the code. However, we must
guarantee that the old application will still meet its timing
requirements even when other applications are scheduled in
the same system.

An interesting problem is how to compose applications that
come with their own scheduling strategy. In reality, different
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schedulers may be used in different context, and there is not
a “catch-all” scheduler that is best for all kind of application
domains. For example, applications that are event-triggered are
best served by on-line scheduling algorithms like fixed priority
or earliest deadline first; time triggered applications are best
handled by off-line schedulers [1].

One way of composing existing applications with differ-
ent timing characteristics is to use a two-level scheduling
paradigm (see Figure 1): at the global level, a scheduler selects
which application will be executed next and for how long.
Each application then possesses a local scheduler that selects
which task will be scheduled next.
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Fig. 1. Hierarchical scheduler structure.

The global scheduler assigns each application a fraction
of the total processor time distributed over the time line
according to a certain law. Moreover, the global scheduler
must “protect” one application from all others, by ensuring
that if an application is requiring more than expected, it does
not compromise the others.

If we could provide a “fluid allocation”, for example by
using the Generalized Processor Sharing (GPS) [2], [3], then
the bandwidth allocation would be easy. Unfortunately, the
GPS algorithm is a theoretical abstraction that cannot be
implemented in practice, but only approximated [4], [5], [6].

In this paper, we consider the class of algorithms that can be
described by the periodic server abstraction. In the real-time
literature, a server is an algorithm that is used to schedule non-
periodic activities together with hard real-time periodic tasks.
Many algorithms have been proposed that belong to the class
of periodic servers [7], [8], [9], [10], [6]. The concept of server
was later extended to indicate also the set of parameters that
must be assigned to each application. According to a periodic
server algorithm, each application is assigned a pair (Q, P ),
with the meaning that the application will receive Q units
of execution every P units of time. The global scheduling
mechanism decides when to schedule the applications; the
selected application, by using the local scheduling mechanism,



decides which task will be executed next.
Some research has already been done on hierarchical com-

position of periodic servers. In particular, it is possible to
perform a schedulability analysis of a group of tasks on a
server, given the pair (Q, P ) assigned to the server, the worst
execution times, periods and deadlines of the tasks, and the
internal scheduling algorithm for the task group. For example,
Saewong et al. [11] presented a response time analysis for the
schedulability of such a hierarchical system.

However, an open issue remains to be answered: given a
real-time application, what is the “best” pair (Q, P ) that can
be assigned to the application so that it is schedulable?.

In this paper we present a technique that answers the
previous question for applications consisting of periodic (or
sporadic) tasks, scheduled by a fixed priority local scheduler.
Given an application, we are able to find a class of possible
parameters (Q, P ) that make the application schedulable. The
designer can then choose the best pair that meets his needs.

The paper is organized as follows. After an overview of
the research in the field of hierarchical schedulers (Section I-
A), the system model and most of the concept and definition
used in the paper are presented in Section II. In Section III,
we present our analysis and propose our method. Finally in
Section VI, we draw our conclusion and propose some future
development.

A. Related work

The research on two-level scheduling algorithms can be
considered a hot topic in the real-time system research. A
general methodology for temporal protection in real-time
system is the resource reservation framework [12], [13]. The
basic idea, formalized by Rajkumar et al. [14], is that each
task is assigned a server that is reserved a fraction of the
processor available bandwidth. If the task tries to use more
than it has been assigned, it is slowed down. This framework
allows a task to execute in a system as it were executing on
a dedicated virtual processor, whose speed is a fraction of the
speed of the processor. Thus, by using a resource reservation
mechanism, the problem of schedulability analysis is reduced
to the problem of estimating the computation time of the
task without considering the rest of the system. Many server
algorithm have been presented in the literature, both for fixed
priority and dynamic priority schedulers [9], [8], [15], [7], [6].
In these models, the server executes together with hard real-
time periodic tasks, and it is mainly used to handle aperiodic
tasks.

Recently, many techniques have been proposed for ex-
tending the resource reservation framework to hierarchical
scheduling.

Saewong et al. [11] proposed to use the Deferrable Server
in a hierarchical way. They present a schedulability analysis
that is based on the worst-case response time for a local fixed
priority scheduler. Deng and Liu in [16], [17] proposed a two-
level hierarchical architecture, which uses the EDF as global
scheduler and a dedicated Total Bandwidth Server [7] for each
application. It is then possible to select the most appropriate
scheduling algorithm for each application. The paper presents

also a sufficient condition for schedulability. This work has
been later extended by Kuo et al. [18] for using RM as global
scheduling algorithm, but the authors assume that all tasks are
periodic with harmonic periods.

Lipari and Baruah in [19], [20] presented the BSS schedul-
ing algorithm that uses EDF as global scheduling algorithm,
and permits to select any scheduling algorithm as application
level scheduler. The paper presents schedulability conditions
for applications that use EDF and RM as second level sched-
ulers. However, the algorithm is complex to implement and
assumes the knowledge of all task deadlines; in fixed priority
scheduling, the absolute deadline may not be specified in the
implementation of the task. Therefore, it is not possible to
schedule legacy applications.

Feng and Mok [21] presented a general methodology for
hierarchical partitioning of a computational resource. It is
possible compose schedulers at arbitrary levels of the hier-
archy. They also propose simple schedulability test for any
scheduler at any level of the hierarchy, but these tests are only
sufficient. In this paper, we will follow Feng and Mok’s initial
approach. However, while Feng and Mok concentrate their
research on how to analyse and guarantee the schedulability
of an application on a partition, we will address the inverse
problem: given an application, scheduled by a local fixed
priority scheduler, how to select the “best” server.

Finally, Almeida et. al [22] presented a methodology for
computing the parameters for scheduling messages on the
FTT-CAN network protocol. Their approach can be seen as
a preliminary version of our design methodology applied to
the CAN bus.

II. SYSTEM MODEL AND DEFINITIONS

An application is a set Γn of n periodic or sporadic tasks,
ordered by decreasing priority. Every task τi is characterized
by a period Ti (or minimum interarrival time), a worst-case
execution time Ci and a relative deadline Di smaller than the
period. In this paper we will assume tasks to be independent.
The extension for interacting tasks is currently under research.

An application is further characterized by a local scheduler
σ(Γn). When the application is selected to execute by the
global scheduler (see Figure 1), the local scheduler selects
which application task will execute. In this paper we focus
our attention on fixed priority schedulers.

The system consists of a set of applications, each one
with a (possibly different) local scheduler. The aim of the
global scheduler is to assign execution time to the applications
according to a given rule. This rule can be static (i.e. the
allocation is pre-computed off-line), or dynamic, according to
some on-line algorithm.

In this paper we will concentrate our efforts in analysing
the behavior of those on-line algorithms referred as periodic
servers. Examples of these algorithms are the Polling Server,
the Deferrable server, the Sporadic Server [8], [10], [7], the
Constant Bandwidth Server [6], etc. All these algorithms have
different peculiarities. Since we do not want to concentrate on
one particular mechanism, in Section II-B we will present an
abstract model of a server and how this model is related to
some existing mechanism.



However, it is important to point out that our methodol-
ogy is very general and can be applied, with some simple
customization, to many other partitioning mechanism like,
for example, p-fair scheduling, static allocation, etc. In the
following subsection, we give an overview of the different
mechanisms for providing partitions.

A. Partitions

A partition is a function Π(t) that has values in {0, 1}. If
Π(t) = 1, then the resource is allocated to the application at
time t. A partition is periodic if it exists P > 0 such that
Π(t) ≡ Π(t + P ) (see [23], [24]).

The global scheduler provides partitions among applica-
tions. A static algorithm pre-computes the partitions off-line,
and at run-time a dispatch mechanism will make use of a
simple table to allocate the resource. Conversely, an on-line
algorithm uses some rule for dynamically allocating the re-
source. Therefore, an on-line algorithm may produce different
partitions every time it is executed, depending on the arrival
times and execution times of the application tasks. Moreover,
these partitions are not necessarily periodic. Examples are the
Deferrable server, the Constant Bandwidth server, etc.

For a given partition, we define the minimum amount of
time that is available to the application in every interval of
length t.

Definition 1: Given a partition Π(t), we define the char-
acteristic function ZΠ(t) as the minimum amount of time
provided by the partition in every time interval of length t ≥ 0:

ZΠ(t) = min
t0≥0

∫ t0+t

t0

Π(x)dx

As an example, consider an off-line algorithm that produces
a periodic partition Π(t) with period 8, which allocates slots
2,3,4 and slot 7. The corresponding characteristic function
ZΠ(t) is plotted in Figure 2. Note that the worst-case interval
starts at time 4.
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Fig. 2. An example of ZΠ(t).

B. The server abstraction

The concept of server algorithm was originally devised
for minimizing the response time of aperiodic tasks when
scheduled together with hard real-time tasks [8], [10]. Re-
cently, some server algorithm has been used for providing
resource reservations [14], [6]. Many server algorithms have
been proposed in the literature, both in fixed priority and in

dynamic priority systems. Since many of these mechanisms
provide similar guarantees, in this paper we analyse a general
abstraction of a server that subsumes (with some important
differences) all the algorithms cited so far.

We define a server as a scheduling entity, i.e. an abstraction
that provides execution time to one or more tasks, according
to a certain local scheduling algorithm. A periodic server
is characterized by two parameters (Q, P ), where Q is the
maximum budget, and P is the server period, plus a local
scheduling algorithm. The system consists of a set of periodic
servers scheduled by a global scheduling algorithm. Each
server maintains two internal variables q and d that are updated
according to the following rules.

a) Server Rules.:

1) Initially, q = 0, d = 0 and the server is inactive.
2) When a task is activated at time t, if the server is

inactive, then q = Q and d = t + P , and the server
becomes active. If the server is already active, then q
and d remain unchanged.

3) At any time t, the global scheduling algorithm selects
one active server. When the server is selected, it executes
the first task in its ready queue (which is ordered by the
local scheduling policy).

4) While some application task is executing, the current
budget q is decremented accordingly.

5) The global scheduler can preempt the server for execut-
ing another server: in this case, the current budget q is
no longer decremented.

6) If q = 0 and some task has not yet finished, then the
server is suspended until time d; at time d, q is recharged
to Q, d is set to d+P and the server can execute again.

7) When, at time t, the last task has finished executing and
there is no other pending task in the server, the server
yields to another server. Moreover, if t ≥ d − q P

Q
, the

server becomes inactive; otherwise it remains active, and
it will become inactive at time d − q P

Q
, unless another

task is activated before.

The periodic server algorithms presented in literature differ
from one another in the underlying global scheduling policy
and in rules 6 and 7. For example, the Deferrable Server and
the Sporadic Server have different rules for recharging the
budget; the Constant Bandwidth Server does not suspend the
server when the budget is 0, but simply decreases its priority
by postponing its absolute deadline.

We do not assume any particular global scheduling policy
for the servers. It is possible to show that the algorithm
described by the previous rules is similar to the Constant
Bandwidth Server [6]. Therefore, it is possible to use EDF as
global scheduler. However, if the server periods are harmonic,
it is also possible to use the same algorithm with the Rate
Monotonic scheduler.

C. Characteristic function of a server

Given a task set that has to be scheduled by a local fixed
priority scheduler, our goal is to find the class of server
parameters (Q, P ) that make the set feasible. In this way, the
designer can choose the best trade-off between a large P and



a small α = Q

P
. In fact, as we will see in more detail in

Section IV, a small P may cause a high number of context
switches between servers, whereas a large P leads to a high
utilisation Q

P
and thus to a waste of computational resources.

In order to find all the possible feasible pairs (Q, P ), we
first need to characterize the temporal behaviour of a server. In
particular, we need to know the minimum amount of execution
time that a server can provide in every interval of time t to
its application.

Definition 2: Given a server S, we define legal(S) as the set
of partitions Π that can be generated by the server algorithm.

Definition 3: Given a server S, ZS(t) is the minimum
amount of time provided by the server S in every time interval
of length t ≥ 0.

ZS(t) = min
Π∈legal(S)

ZΠ(t)

To understand the importance of the function ZS(t), con-
sider the schedulability problem of a single task τi on the
server S. If ZS(Di), which is the minimum amount of time
provided in every time interval Di-long, is greater than or
equal to the maximum possible time requested by the task τi

and all its higher priority tasks in the same interval, then task
τi is feasible on the server S.

In Figure 3, we plot the characteristic function ZS(t) of a
server with parameters Q = 5 and P = 8. Since we do not
assume any particular global scheduling algorithm, and we do
not know the global system load, we consider the worst-case
situation, when the application tasks are activated just after
the budget is exhausted. In this case, the first instant of time
at which they will receive execution is at 2(P − Q).
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Fig. 3. General case of periodic server.

Theorem 1: Given a server algorithm defined by the rules
of Section II-B, and with parameters (Q, P ), and defined k =⌈

t−(P−Q)
P

⌉
, its characteristic function ZS(t) is:

ZS(t)=





0 if t ∈ [0, P − Q]
(k−1)Q if t∈(kP−Q, (k+1)P−2Q]
t − (k + 1)(P − Q) otherwise

.

Proof: We have to compute the worst-case allocation
to the server for every interval of time. Consider an interval
starting at time t. There are 2 possibilities:

case a : The server is inactive at time t. In this case,
according to rule 2, a new budget q = Q and a
new deadline d = t + P are computed. Therefore,
the worst-case allocation is depicted in Figure 4a.

case b : The server is active at time t and it has already
consumed x units of budget. In this case, the worst
possible situation is when the server is preempted by
the global scheduler until time t = d− (Q−x). The
worst-case allocation is depicted in Figure 4b, and is
minimum for x = Q.

By comparing the two cases, it is clear that case b, with
x = Q, is the most pessimistic. The corresponding function is
ZS(t)1.
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Fig. 4. Worst-case allocation for the server.

Function ZS(t) is complex to analyse. For this reason, we
will first consider a simple lower bound function ξ(t):

ξ(t) = max{0, α(t − ∆)}. (1)

where α and ∆ are defined as follows:

• α is the share of the processor, formally defined as α =

lim
t→∞

ZS(t)

t
;

• ∆ is the maximum delay in the time slots distribution,
formally defined as ∆ = max{d ≥ 0 : ∃t ≥ 0 ZS(t) ≤
α(t−d)} or, equivalently, min{d ≥ 0 : ∀t ≥ 0 ZS(t) ≥
α(t − d)}.

The relationship between the characteristic function ZS(t)
and its lower bound function ξ(t) is shown in Figure 2. It is
worth to note that the lower bound function ξ(t) is also used
in [24], [23] by Feng and Mok to define a class of equivalent
resource partitions.

Also, function ξ(t) can be used to model other kinds of
algorithms and partitions. Therefore, in the remaining of the
paper we will first develop our methodology using function
ξ(t) (see Sections III and IV). In this way, the methodology is
easily extensible to other kind of allocation algorithms. Then,
we will analyse what changes in our methodology when we
use directly the characteristic function ZS(t).

III. ANALYSIS OF A FIXED PRIORITY LOCAL SCHEDULER

Now, we are going to analyse the schedulability of a task set
Γn on a server S. This problem has been already approached
in different ways. For example Saewong et al. [11] compute
the worst-case response time of every task in the presence of a
server. We propose a different approach because our ultimate
goal is not only to check the feasibility on a given server, but
also to find the “best” server that guarantees the schedulability
of the task set. As usual in the real-time research, we must
consider the worst-case scenario both for the server and for
the task set.

1Please note that Bernat et al. [15] and Saewong et al. [11] found the same
kind of relationship for the Deferrable Server when scheduled by a fixed
priority global scheduling algorithm.



When analysing the schedulability of task τi, we study the
situation at the critical instant, which corresponds to the time
in which all higher priority tasks are released. Saewong et al.
[11] proved that this is indeed the worst case for task τi even
in the presence of the server.

The worst-case allocation of resource provided by a server S

is given by its characteristic function ZS(t), which represents
(see Definition 3) the minimum available time for the task set
in any interval of length t. So, informally speaking, we can say
that a server can schedule a task set if the time provided by
the server is greater than or equal to the the time requested by
the tasks. In the following, we will characterize the worst-case
workload requested by the task set.

A. Characterisation of fixed priority scheduling

Let us first tackle the problem of finding the minimum pro-
cessor speed that maintains the task set schedulable. Slowing
down the processor speed by a factor α ≤ 1, is equivalent to
scale up the computation times by 1/α:

∀i = 1, . . . , n C̃i = Ci/α. (2)

The problem is to find the minimum speed αmin, keeping
the system schedulable. In [25], Bini and Buttazzo found a
new way to express the schedulability condition under a fixed
priority scheduling algorithm as a set of linear inequalities in
the computation times Ci.

Theorem 2 (Theorem 3 in [25]): A task set Γn =
{τ1, τ2, . . . , τn} is schedulable if and only if:

∧

i=1...n

∨

t∈Pi−1(Ti)

i∑

j=1

⌈
t

Tj

⌉
Cj ≤ t (3)

where Pi(t) is defined by the following recurrent expression:




P0(t) = {t}

Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t).

(4)

By introducing the speed factor α, we can reformulate
condition (3) taking into account the substitution given by
Equation (2). The result is the following:

∧

i=1...n

∨

t∈Pi−1(Ti)

i∑

j=1

⌈
t

Tj

⌉
Cj

α
≤ t

∧

i=1...n

∨

t∈Pi−1(Ti)

1

α

i∑

j=1

⌈
t

Tj

⌉
Cj ≤ t

∧

i=1...n

∨

t∈Pi−1(Ti)

α ≥

∑i

j=1

⌈
t

Tj

⌉
Cj

t

and finally:

α ≥ αmin = max
i=1...n

min
t∈Pi−1(Ti)

i∑

j=1

⌈
t

Tj

⌉
Cj

t
(5)

where αmin is the minimum allowed speed rate of a processor
still capable to schedule the task set.

Now we introduce the delay ∆ in the analysis. In fact, when
a task set is scheduled by a server, there can be a delay in the

service because the server is not receiving any execution time
from the global scheduler. To extend the previous result to the
case when ∆ > 0 we need to look at Equation (5) from a
different point of view. In Figure 5, we show the worst-case
workload for a task τi, called Wi(t), and the line αmint. The
line represents the amount of time that a processor with speed
αmin provides to the task set. Task τi is schedulable because:

∃t∗ ∈ (0, Di] : αmint
∗ ≥ Wi(t

∗).

The presence of a delay ∆ forbids us to allocate time slots
for an interval of length ∆. This interval can start, in the
worst case, at the critical instant for task τi, i.e. when τi

and all higher priority tasks are released. It follows that the
time provided by the server is bounded from below by the
function ξ(t) previously defined in Equation (1). In Figure 5
we also show different functions ξ(t) for different values
(α, ∆). Therefore, when introducing ∆, task τi is schedulable
on server S, characterized by function ξ(t), if:

∃t∗ ∈ (0, Di] : ξ(t∗) ≥ Wi(t
∗). (6)

Notice that, as ∆ increases, the tangent point t∗ may change.
By using Equation (6), and increasing ∆ we can find all
possible α that make the task τi schedulable.
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In order to find a closed formulation for the relation between
α and ∆ expressed by Equation (6), we need the following
Lemma proved in [25].

Lemma 1 (Lemma 4 in [25]): Given a task subset Γi =
{τ1, . . . , τi} schedulable by fixed priorities and the set Pi(b)
as defined in Equation (4), the workload Wi(d) is

Wi(d) = min
t∈Pi(d)

i∑

j=1

⌈
t

Tj

⌉
Cj + (d − t).

By means of this lemma, the well known schedulability
condition for the task set:

∀i = 1 . . . n Ci + Wi−1(Di) ≤ Di

can be rewritten as follows:
∀i = 1 . . . n

Ci + min
t∈Pi−1(Di)

i−1∑

j=1

⌈
t

Tj

⌉
Cj + (Di − t) ≤ Di. (7)



When the task set is served by a server with function
ξ(t), the schedulability condition expressed by Equation (7)
becomes the following:
∀i = 1 . . . n

∆ +
Ci

α
+ min

t∈Pi−1(Di)

i−1∑

j=1

⌈
t

Tj

⌉
Cj

α
+ (Di − t) ≤ Di (8)

Since the link between (α, ∆) is now explicit, we can ma-
nipulate the previous expression to obtain a direct relationship
between α and ∆. In fact, the schedulability condition of the
single task τi can be written as:

∆ ≤ Di−


Ci

α
+ min

t∈Pi−1(Di)

i−1∑

j=1

⌈
t

Tj

⌉
Cj

α
+(Di−t)




and, simplifying the expression, we finally obtain:

∆ ≤ max
t∈Pi−1(Di)

t −
1

α


Ci +

i−1∑

j=1

⌈
t

Tj

⌉
Cj


 . (9)

To take into account the schedulability of all the tasks in
the set (and not only τi as done so far), this condition must be
true for every task. Hence, we obtain the following theorem.

Theorem 3: A task set Γn = {τ1, τ2, . . . , τn} is schedulable
by a server characterized by the lower bound function ξ(t) if:

∆ ≤ min
i=1...n

max
t∈Pi−1(Di)

t −
1

α


Ci +

i−1∑

j=1

⌈
t

Tj

⌉
Cj


 (10)

where:





P0(t) = {t}

Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t).

Proof: If ∆ satisfies Equation (10), then it satisfies all
the equations (9) for every task in the set. Then every task is
schedulable on such a local scheduler and so the whole set is,
which proves the theorem.

IV. HOW TO DESIGN A SERVER

In our process of designing a server for an application Γn,
the first step is to characterise the application by specifying all
the individual task parameters. Once this step is carried out,
by applying Theorem 3 a class of (α, ∆) pairs is obtained. On
this class, which guarantees by definition the schedulability of
application Γn, we perform the server selection by optimizing
a desired cost function. One possible cost function is the
overhead of the scheduler. In fact, when choosing the server
parameters, we must balance two opposite needs:

1) the required bandwidth should be small, to not waste the
total processor capacity;

2) the server period should be large, otherwise the time
wasted in context switches performed by the global
scheduler will be too high.

Thus a typical cost function to be minimised may be the
following:

c1
TOverhead

P
+ c2 α (11)

where TOverhead is the global scheduler context switch time,
P is the server period, α is the fraction of bandwidth, and
c1 and c2 are two designer defined constants. Moreover some
additional constraints in the (α, ∆) domain, other than those
specified by Equation (10), may be required. For example,
if we use a fixed priority global scheduler, to maximize the
resource utilisation we could impose the server periods to be
harmonic.

i Ti Ci Di

1 4 1 4
2 10 1 10
3 25 3 25

TABLE I

AN EXAMPLE: Γ3 DATA.

To clarify the methodology consider the following example.
Suppose we have a set of three tasks Γ3 with the data shown
in table I (for simplicity, we choose Di = Ti, but the
approach is the same when Di < Ti). The utilisation is U =
1/4 + 1/10 + 3/25 = 47/100, hence α cannot definitively be
smaller than 47/100. The schedule corresponding to the worst-
case scenario (i.e. the critical instant) when the application is
scheduled alone on the processor is shown in Figure 6.

By expanding Equation (9) for τ1 we obtain the following
inequality:

P0(4) = {4}

∆ ≤ 4 − 1/α

Doing the same for τ2, we obtain:

P1(10) = {8, 10}

∆ ≤ max{8− 3/α, 10− 4/α}

and, finally, for the last task τ3:

P2(25) = {20, 24, 25}

∆ ≤ max{20− 10/α, 24− 12/α, 25− 13/α}

∆ ≤ 24 − 12/α.

In order to make all the three tasks schedulable, all the
inequalities must hold at the same time, as stated in Theorem 3.
It follows that:

∆ ≤ min{4 −
1

α
, max{8−

3

α
, 10 −

4

α
}, 24−

1

2
α} (12)

In Figure 7, we plotted the set of (α, ∆) pairs defined by
Equation (12) as a gray area whose upper boundary is drawn
by a thick line. This boundary is a piece-wise hyperbole,
because it is the minimum between inequalities, each one of
them is an hyperbole (see Equations (9) and (10)). Notice that,
in this particular case, the schedulability condition for task τ2

does not provide any additional constraint.
In Figure 7, we also plotted a qualitative cost function that

increases as α increases, and decreases as ∆ increases (see
Equation 11). If we minimize this qualitative function on the
domain expressed by Equation (12), the solution is α = 11

20
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and ∆ = 24
11 . We can now find the period P and the budget

Q of the server corresponding to the selected solution:

∆ = 2(P − Q) α =
Q

P

then:

P =
∆

2(1 − α)
Q = αP

By substitution, we obtain the server parameters: P = 80
33 ≈

2.424 and Q = 4
3 ≈ 1.333.

Finally, in Figure (8), we show the schedule for the example
application, obtained by considering the worst-case scenario
both for the time requested by tasks and for the time provided
by the server. The shaded areas represent intervals where the
server does not receive any allocation by the global scheduler.
As expected, all tasks complete within their deadlines.

V. IMPROVING THE METHODOLOGY

In previous sections, we described a methodology for ob-
taining the parameters of a periodic server given an application
with fixed priority as a local scheduler. We used function ξ(t)
which gives an lower bound on the characteristic function of
the server. It follows that the methodology is quite general and

can be applied also to other kind of on-line algorithms. For
example, it is possible to bound the characteristic function of
a static partition with a function of the same form ξ(t).

However, when considering periodic server algorithms, the
presented methodology is not optimal because we use only a
lower bound of the characteristic function of the server. To be
more precise, we will consider directly function ZS(t).

First, we rewrite Equation (10) substituting (α, ∆) with
(Q, P ). Recall the relationship between (Q, P ) and (α, ∆):

∆ = 2(P − Q) α =
Q

P
. (13)

Now, equation (10) can also be written by using the logical
and, or operators:

∧

i=1...n

∨

t∈Pi−1(Di)

∆ ≤ t −
1

α

i∑

j=1

⌈
t

Tj

⌉
Cj . (14)

To simplify the notation, we define the processor demand
of the first i higher priority tasks as Yi(t) =

∑i

j=1

⌈
t

Tj

⌉
Cj .

Then we substitute (13) in the previous equation:

∆ ≤ t −
Yi(t)

α

2(P − Q) ≤ t −
P Yi(t)

Q

2Q2 + (t − 2P )Q − P Yi(t) ≥ 0

Q ≥

√
(t − 2P )2 + 8PYi(t) + 2P − t

4

and then:

Q ≥ max
i=1...n

min
t∈Pi−1(Di)

√
(2P − t)2 + 8PYi(t) + 2P − t

4
(15)

This expression provides the same server parameters as
Eq. (10), since simply obtained by substituting (α, ∆) with
(Q, P ). However, it is useful to compare this result with the
one we will get next.

Now, we directly use ZS(t). By following the same reason-
ing of Section III, task τi is schedulable iff:

∃t∗ ∈ (0, Di] : ZS(t∗) ≥ Yi(t
∗). (16)

Therefore, the following Theorem holds.
Theorem 4: A task set Γn = {τ1, τ2, . . . , τn} is schedulable

by a periodic server characterized by function ZS(t) iff:

Q ≥ max
i=1...n

min
t∈Pi−1(Di)

q(i, t, P ) (17)
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Fig. 8. Worst-case schedule of Γ3 on a server with the computed parameters.

where:

q(i, t, P ) =





Yi(t)

k − 1
t+2Q
k+1 ≤ P < t+Q

k

P −
t − Yi(t)

k + 1
t+Q

k+1 ≤ P < t+2Q

k+1

and, as in Theorem 3:





P0(t) = {t}

Pi(t) = Pi−1

(⌊
t

Ti

⌋
Ti

)
∪ Pi−1(t).

Proof: From [26], [25], we know that a task set is
schedulable iff:

∧

i=1...n

∨

t∈Pi−1(Di)

Yi(t) ≤ t, (18)

meaning that for every task, the available time t must be
greater than or equal to the required time in at least one time
instant within the task deadline.

If only a fraction of the processor time is available, ex-
pressed by function ZS(t), the necessary and sufficient con-
dition becomes:

∧

i=1...n

∨

t∈Pi−1(Di)

Yi(t) ≤ ZS(t). (19)

By substituting the analytical expression for ZS(t), given by
Theorem 1, in Yi(t) ≤ ZS(t) we obtain:

∧

i=1...n

∨

t∈Pi−1(Di)

Q ≥ q(i, t, P ) (20)

Then, by one simple step we get:

Q ≥ max
i=1...n

min
t∈Pi−1(Di)

q(i, t, P ) (21)

as required.
It is now possible to evaluate the benefit of using the

tighter Equation (17) instead of Equation (15). Since both the
relationships are obtained by assembling in the same way two
different functions of t, i and P , we will just compare the
two composing functions. Consider, using again the example
of Section IV, the second task (i = 2) and fix t equal to 10.
For this task set the processor demand Y2(10) is 4. Finally we
plot q(2, 10, P ) and the function given by the substitution in
the (α, ∆) model.

The dark gray area represents the pairs (Q, P ) that make
the application tasks schedulable on the server, but cannot
be obtained by using the (α, ∆) model (Equation (15)). For
different values of t and i the same functions in Figure 9 are
scaled along the two axes, not altering the overall shape.
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Fig. 9. Comparison between Equations (15) and (17).

It is worth to note that for small values of the period P the
difference between the two curves becomes negligible and tend
to 0 as P approaches 0. This is justified by the fact that small
server periods tend to approximate fluid allocation [2], [3]. As
expected, for small periods, the slope of both the curves tends
to Yi(t)/t (2/5 in Figure 9).

Of course, the final region is the combination of many
curves similar to the one shown in Figure 9. We do not show
here the final set of feasible (Q, P ) because the resulting figure
is quite complex.

As last remark, we show the result of the exact methodology
applied on the example task set of Table I. When we calculate
the server’s parameters as described in Section IV, we have
some spare time left due to the fact that the methodology is
not optimal. For example, by looking at Figure 8, it is possible
to see that the processor is idle just before time instant t = 20.
This idle time interval is 2

11 units of time long, and can reduced
by selecting the server parameters more carefully.

In fact, if we apply the exact methodology described in this
section, we obtain P = 45

14 ≈ 3.214 and Q = 12
7 ≈ 1.714. By

using these parameters, the task set is still schedulable but the
period is larger and the required bandwidth ( Q

P
= 8

15 ≈ 0.533)
is smaller than those obtained using the (α, ∆) server model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a methodology for computing the
“best” server parameters in an hierarchical scheduling system,



when the application is scheduled by a fixed priority local
scheduler.

We also believe that the concept of “partition” is quite
general and will allow us to extend this methodology in other
directions in the next future. For example, we would like to
analyse other kind of global allocation mechanisms that cannot
be included in the server category. We also believe that this
work can be used as a basis for analysing the composition of
arbitrary kinds of scheduling mechanisms.
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