
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 1

Schedulability analysis of global scheduling
algorithms on multiprocessor platforms

Marko Bertogna, Michele Cirinei, Giuseppe Lipari Member, IEEE

Abstract—This paper addresses the schedulability problem of periodic and sporadic real-time task sets with constrained deadlines
preemptively scheduled on a multiprocessor platform composed by identical processors. We assume that a global work-conserving
scheduler is used and migration from one processor to another is allowed during task lifetime. First, a general method to derive
schedulability conditions for multiprocessor real-time systems will be presented. The analysis will be applied to two typical scheduling
algorithms: Earliest Deadline First (EDF) and Fixed Priority (FP). Then, the derived schedulability conditions will be tightened, refining
the analysis with a simple and effective technique that significantly improves the percentage of accepted task sets. The effectiveness
of the proposed test is shown through an extensive set of synthetic experiments.

Index Terms—Multiprocessor scheduling, real-time systems, global scheduling, task migration.

✦

1 INTRODUCTION

THE integration of multiple processors on a single
chip constitutes one of the most important inno-

vations in the design and development of modern em-
bedded systems. In contrast, a complete theory of real-
time scheduling for multi-processor systems is still to
come. Much of the research efforts in the past have been
concentrated on scheduling and schedulability analysis
of single processor systems. Unfortunately, most of the
results do not extend to multiprocessor systems.

In this paper, the problem of preemptively scheduling
a real-time task set on a symmetric multiprocessor (SMP)
system consisting of m processors is addressed. This
problem can be solved in two different ways: by parti-
tioning tasks to processors, or with a global scheduler. In
the first case, tasks are allocated to processors at design
time with an off-line procedure. The partitioning prob-
lem is analogous to the bin-packing problem, which is
known to be NP-Hard in the strong sense [1]. However,
once the tasks are allocated, the scheduling problem is
reduced to m single processor scheduling problems, for
which optimal solutions are known when preemptions
are allowed. The main advantages of this approach are
its simplicity and efficiency. If the task set is fixed and
known a-priori, in most cases the partitioning approach
is the most appropriate solution. On the other hand, if
tasks can join and leave the system at run-time, it may be
necessary to reconfigure the system by re-allocating tasks
to processors. As an example, consider a non-saturated
multiprocessor system, in which a task requests to join
at a certain time and there is no processor with enough
spare capacity to accommodate the new task. Thus,

• M. Bertogna, M. Cirinei and G. Lipari are with Scuola Superiore
Sant’Anna, piazza Martiri della Libertà 33, 56127 Pisa, Italy. E-mail:
m.bertogna@sssup.it, m.cirinei@sssup.it, lipari@sssup.it.

the partitioning algorithm needs to be executed on-
line to see if, by re-allocating some existing tasks, it is
possible to accommodate the new one. Alternatively, a
load balancing algorithm must be periodically executed
to re-allocate tasks to processors so to avoid the po-
tential waste of computational resources. The efficiency
of the system depends on the frequency at which load-
balancing routines are called and on the complexity of
these algorithms. However, repeatedly calling non-trivial
routines imposes a heavy load on the system, becoming
infeasible for systems with highly variable workloads.

An alternative solution is represented by global sched-
ulers, which maintain a single system-wide queue of
ready tasks, from which tasks are extracted at run-time to
be scheduled on the available computing resources. As
opposed to partitioned approaches, different instances
of the same task can execute on different processors.
We say that a task migrates if it is moved from one
processor to another during its lifetime. If tasks can
change processor only at job boundaries, we say that
task migration is allowed; we call instead job migration
the possibility of moving a task from a processor to
another during the execution of a job. Using global
scheduling algorithms, tasks are dynamically assigned to
the available processing units. This allows maintaining
the system load always balanced, suggesting the use
of global scheduling algorithms when the workload
significantly varies at run-time or is not known a priori.
An intermediate solution between global and partitioned
scheduling is given by semi-partitioned scheduling al-
gorithms [2]. A semi-partitioned scheduler limits the
number of processors among which a task can migrate,
simplifying the implementation of systems composed by
a large number of processors, and reducing the penalties
associated to task migrations.

The Pfair class of global scheduling algorithms is
known to be optimal for scheduling periodic and spo-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 2

radic real-time tasks with job migration when deadlines
are equal to periods [3], [4]. Such algorithms are based
on the concept of quantum (or slot): the time line is
divided into equal-size intervals called quanta, and at
each quantum the scheduler allocates tasks to processors.
A disadvantage of this approach is that all processors
need to synchronize at the quantum boundary, when the
scheduling decision is taken. Moreover, if the quantum
is small, the overhead in terms of number of context
switches and migrations may be too high. Solutions to
mitigate this problem have been proposed in the litera-
ture [5], however, the complexity of their implementation
increases significantly.

A more reasonable number of context switches can be
obtained by reducing the number of times the priority of
a job can change. Using a task-level fixed-priority scheduler
(FP), all jobs generated by the same task have identical
priorities. A job-level fixed priority scheduler, instead, can
change the priority of a task only at job boundaries.
An example of such a scheduler is given by EDF. Note
that Pfair algorithms can change the priority of a job
even during its execution. Such kind of schedulers are
called job-level dynamic. The advantage of using a task- or
job-level fixed priority scheduler is the relatively simple
implementation and the minor overhead. However, the
overhead of migrating a task from one processor to
another still needs to be taken into account.

The schedulability analysis of job- and task-level fixed
priority scheduling algorithms on SMPs has only re-
cently been addressed [6], [7], [8], [9], [10], [11], [12], [13],
[14]. The feasibility problem appears to be much more
difficult than in the uniprocessor case. For example, EDF

loses its optimality on multiprocessor platforms. Due to
the complexity of the problem, only sufficient conditions
have been derived so far. As shown in our simulations,
the existing schedulability tests consider situations that
are overly pessimistic, leading to a significant number of
rejected task sets that are instead schedulable.

1.1 Our contribution

This paper presents non-trivial improvements on
schedulability analysis of global scheduling algorithms
for multiprocessor systems. The contributions of our
analysis are manyfold. First, general conditions that are
valid for any work-conserving scheduling algorithm and
constrained deadline task sets are stated. They are later
adapted to two popular scheduling algorithms: Fixed
Priority (FP) and Earliest Deadline First (EDF). These tests
can successfully guarantee a larger portion of schedula-
ble task sets when heavy tasks (i.e., tasks whose utilization
is greater than 0.5) are present.

Second, the main weak points of these tests are iden-
tified. These observations trigger a further refinement
on the computation of the interference a task can be
subject to. The result of this latter step is a novel iter-
ative algorithm that allows considerably increasing the
number of successfully detected schedulable task sets,

compared to any previously proposed schedulability test.
The complexity of the proposed algorithm is pseudo-
polynomial, but can be reduced by limiting the number
of iterations of the test to a small constant, without
significantly affecting performances. Finally, an extensive
set of synthetic experiments is presented to show the
improved performances of our analysis.

2 SYSTEM MODEL

Consider a set τ composed by n periodic or sporadic
tasks to be preemptively scheduled on m identical pro-
cessors, using a global scheduler with job migration
support.

A task τk is a sequence of jobs Jj
k , where each job is

characterized by an arrival time rj
k, an absolute deadline

dj
k, a computation time cj

k, and a finishing time f j
k .

Every task τk = (Ck, Dk, Tk) ∈ τ is characterized by a
worst-case computation time Ck, a period or minimum
interarrival time Tk, and a relative deadline Dk, with
Ck ≥ cj

k, rj
k ≥ r

(j−1)
k + Tk, dj

k = rj
k + Dk. We denote with

constrained deadline (resp. implicit deadline), the systems
with Dk ≤ Tk (resp. Dk = Tk). This paper will exclusively
consider implicit and constrained deadline systems, leaving
the analysis of arbitrary deadlines as a future work.

We define the utilization of a task as Uk = Ck

Tk
. We

also define the density λk = Ck

Dk
, which represents the

“worst-case” request of a task in a generic time interval.
Let Umax (resp. λmax) be the largest utilization (resp. the
largest density) among all tasks. The total utilization Utot

and the total density λtot of a task set are defined as:
Utot =

∑

τk∈τ Uk and λtot =
∑

τk∈τ λk. To simplify the
equations, we use (x)0 as a short notation for max(0, x).

We assume that the cost of preemption and migration
are either negligible or included in the worst-case execu-
tion parameters. Moreover, job parallelism is forbidden,
meaning that no job of any task can be executed at the
same time on more than one processor. Unless otherwise
stated, we make no assumption on the global scheduling
algorithm in use, except that it should be work-conserving,
according to the following definition.

Definition 1 (Work-conserving): A scheduling algorithm
is work-conserving if there are no idle processors when a
ready task is waiting for execution.

2.1 Workload and interference

The workload Wk(a, b) of a task τk in an interval [a, b) is
the amount of time task τk executes during interval [a, b),
according to a given scheduling policy. The interference
over an interval [a, b) on a task τk is the cumulative
length of all intervals in which τk is ready to execute
but it cannot execute due to higher priority jobs. We
denote such interference with Ik(a, b). We also define
the interference Ii,k(a, b) of a task τi on a task τk over
an interval [a, b) as the cumulative length of all intervals
in which τk is ready to execute, and τi is executing while
τk is not. Notice that by definition:

Ii,k(a, b) ≤ Ik(a, b), ∀i, k, a, b. (1)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 3

2.2 Time division

Despite the fact that for mathematical convenience, time-
instants and interval lengths are often modeled using
real numbers, in a real implemented system time is not
infinitely divisible. The times of event occurrences and
durations between them cannot be determined more
precisely than one tick of the system clock. Therefore,
any time value t involved in scheduling is assumed to be
a non-negative integer value and is viewed as represent-
ing the entire interval [t, t + 1). This convention allows
the use of mathematical induction on clock ticks for
proofs, avoids potential confusion around end-points,
and prevents impractical schedulability results that rely
on being able to slice time at arbitrary points.

3 SUMMARY OF EXISTING RESULTS

To our knowledge, this is the first work explicitly deriv-
ing schedulability conditions that are valid in general
for any global scheduling algorithm. However, there
are results on the schedulability analysis of systems
scheduled with a particular policy, like EDF or FP.

Regarding schedulability analysis of periodic real-time
tasks with EDF, Goossens et al. [6] proposed a schedula-
bility test based on a utilization bound, assuming that
tasks have relative deadlines equal to the period. It
consists of a single simple inequality that compares the
global utilization of the task set with a bound proven to
be tight (in the sense that there are task sets with total
utilization exceeding the bound by ε, which EDF cannot
schedule, ∀ε > 0).

Theorem 1 (from [6]): A task set τ composed by peri-
odic and sporadic tasks with implicit deadlines is EDF-
schedulable upon a SMP composed by m processors
with unitary capacity, if

Utot ≤ m(1− Umax) + Umax. (2)

We will hereafter show how to modify the above result
when deadlines can be different than periods.

According to the terminology introduced in [6], a
uniform multiprocessor platform π consists of m equiv-
alent processors, each one characterized by a computing
capacity si. This means that a job that executes on the
i-th processor for t time units completes si × t units of
execution. Let Sπ and sπ be the sum of the computing
capacities of all processors and the computing capacity
of the fastest processor of platform π, respectively. The
following theorem shows a relation between an optimal
algorithm for a uniform multiprocessor platform and
EDF on a unit-capacity SMP.

Theorem 2: [from [6]] A set of jobs I that is feasible
on some uniform multiprocessor platform π with cumu-
lative computing capacity Sπ, and in which the fastest
processor has speed sπ < 1, is schedulable with EDF on
a SMP π′ composed by m processors with unit capacity,
if

m ≥
Sπ − sπ

1− sπ

.

Note that Theorem 2 assumes an arbitrary collection
of jobs. The next lemma states a feasibility result that
instead applies to periodic and sporadic task sets.

Lemma 1: A task system τ composed by periodic and
sporadic tasks with constrained deadlines is feasible on a
uniform multiprocessor platform π which has Sπ = λtot

and sπ = λmax.
Proof: An arbitrary task set τ with n tasks can always

be scheduled on a uniform multiprocessor platform π
composed by n processors, that for each task τi has a
corresponding processor with computing capacity si =
Ci/Di. This can be done with an algorithm that allocates
each task to the associated processor. The sum of the
computing capacities of all processors and the comput-
ing capacity of the fastest processor of the platform π
are therefore equal to, respectively, λtot and λmax.

By combining Lemma 1 with Theorem 2, it is possible
to formulate a sufficient scheduling condition.

Theorem 3 (GFB): A task set τ composed by both pe-
riodic and sporadic tasks with constrained deadlines is
EDF-schedulable upon a SMP composed by m processors
with unitary capacity, if

λtot ≤ m(1− λmax) + λmax. (3)

When deadlines are equal to periods, the above result
reduces to the utilization-based schedulability condition
of Theorem 1. From now on we will refer with GFB to
the test given by Equation (3).

A drawback of the GFB test is that it cannot guar-
antee the schedulability of task systems having at least
one task with large execution requirements: when λmax

is large, the RHS of Equation (3) remains small even
increasing the number of processors. This is due to a
particular effect, called Dhall’s effect [15], that limits the
total schedulable utilization of systems scheduled with
EDF (or FP). Since GFB makes use of a very small number
of parameters, it is not able to distinguish whether this
effect can take place. To overcome this limit, Goossens et
al. proposed in [6] a modified version of EDF, called EDFk,
assigning highest priority to the k heaviest tasks, and
scheduling the remaining ones with EDF. A schedulabil-
ity test is found applying GFB to a subsystem composed
by the (n−k) EDF-scheduled tasks on (m−k) processors1.
To increase the chances of finding a feasible schedule, it
is then possible to try all possible values for k ∈ [0, m).
Another possibility to overcome Dhall’s effect is to assign
highest priority to tasks having utilization larger than
a given threshold, as proposed in [17]. This algorithm,
called EDF-US (EDF with Utilization Separation), allows
reaching a (tight) schedulable utilization bound of m+1

2
for implicit deadline systems, when a threshold of 1

2 is
used [18]. A generalization of the above results for sys-
tems with deadlines different from periods is presented
in [16].

A different analysis for constrained deadline systems
scheduled with global EDF or FP has been proposed by

1. The proof for systems with deadlines different from periods can
be found in [16]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 4

Ik > Dk − Ck Jj
k

τk

τk

τk

Dk

rj
k dj

k

other jobs
CPUs

miss

Fig. 1: Problem window.

Baker in [7]. A test is derived consisting in n conditions
(one for each task) that must hold for the task set to
be schedulable. The idea is based on the consideration
that if a job Jj

k of a task τk misses its deadline dj
k, it

means that the load in an interval [rj
k, dj

k), called problem
window, is at least m(1−λk)+λk. The situation is depicted
in Figure 1. Note that, to have a deadline miss for job
Jj

k , all m processors have to execute other jobs for more
than Dk −Ck . If it is possible to show, for every job Jj

k ,
that the task set cannot generate so much load in interval
[rj

k, dj
k), the schedulability is guaranteed.

The interference of any task τi on task τk in interval
[rj

k, dj
k) may include one job of τi with arrival before rj

k

and deadline in [rj
k, dj

k) that execute entirely or in part
inside the interval. The contribution of this job to the
interference is called carry-in (it will be defined more
precisely in section 4.2).

To find a better estimation of the carry-in of the in-
terfering tasks, Baker proposes to enlarge the considered
interval: instead of concentrating on interval [rj

k, dj
k), he

extends such interval in [a, dj
k). The basic idea is that

[a, dj
k) is the largest possible interval such that the load

is still greater than m(1 − λk) + λk . This new interval
is called busy window. By deriving an upper bound on
the load produced in the busy window, a sufficient
schedulability condition is obtained (Theorem 12 in [7]).

Following a similar approach, Baker later refined his
analysis for EDF [13], [14] and for FP [12], [14], consider-
ing also the case in which deadlines can be greater than
periods. The test in [13] is proved to generalize the uti-
lization bound of Goossens et al. [6] for implicit deadline
systems.However, the dominance relation ceases when
considering deadlines different from periods, as we will
show in our simulations.

Among previous works addressing the schedulability
analysis of systems scheduled with fixed priority, Ander-
sson et al. [8], [9] provided bounds to the schedulable
utilization of tasks sets scheduled using rate mono-
tonic priority assignment. They proved that an implicit
deadline task set can be successfully scheduled on m
processors if the total utilization is at most m2/(3m− 2)
and every task has individual utilization less than or
equal to m/(3m − 2). Using this result, they showed
that an algorithm called RM-US[m/(3m − 2)] — that
gives highest priority to the tasks with utilization greater
than m/(3m− 2) and schedules the other ones with rate

monotonic — is able to reach a schedulable utilization
of m2/(3m−2). These bounds have been later improved
in [11], where the following density-based test is derived.

Theorem 4 (from [11]): A set of periodic or sporadic
tasks with constrained deadlines is schedulable with
Deadline Monotonic priority assignment on m ≥ 2
processors if λtot ≤

m
2 (1− λmax) + λmax.

When deadlines are equal to periods, the above con-
dition is shown to dominate the rate monotonic result
in [8]. A corollary of Theorem 4 is that using a hybrid
version of deadline monotonic – called DM-DS[1/3] –
that gives highest priority to tasks with density higher
than 1/3, it is possible to schedule every constrained
deadline task set with λtot ≤ (m + 1)/3.

When considering dynamic-job priority scheduling al-
gorithms, there are recently proposed solutions [20] that
have good schedulability performances, with a number
of context changes lower than with Pfair algorithms. An
interesting algorithm that has the same worst-case num-
ber of preemptions of EDF, but much better scheduling
performances for multiprocessor systems is EDF with
zero laxity (EDZL). Schedulability conditions for EDZL

have been derived in [21], [22].

4 SCHEDULING ANALYSIS

In this section, we will extend the line of reasoning used
in [7], [13], [12], [14]. To clarify the methodology, we
briefly describe the main steps that will be followed to
derive the schedulability test.

1) As in [7], we start by assuming that a job Jj
k of task

τk misses its deadline dj
k;

2) Based on this assumption, we give a schedulability
condition that uses the interference Ik that the job
must suffer in interval [rj

k, dj
k) for the deadline to

be missed;
3) If we were able to precisely compute this in-

terference in any interval, the schedulability test
would simply consist in the condition derived at
the preceding step and it would be necessary and
sufficient; unfortunately, we are not able to find a
method to exactly compute such interference with
reasonable complexity;

4) Therefore, we give an upper bound to the in-
terference in the interval and derive a sufficient
scheduling condition.

Let us first start by deriving some useful results on
the interference time.

4.1 Interference time

The results contained in this section apply to any collec-
tion of tasks scheduled with a work-conserving policy.
No other assumption is made on the scheduling algo-
rithm in use.

Lemma 2: The interference that a task τi causes on a
task τk in an interval [a, b) is never greater than the
workload of the task in the same interval:

∀i, k, a, b Ii,k(a, b) ≤Wi(a, b) ≤ b− a.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 5

Lemma 2 is obvious, since Wi(a, b) is an upper bound
on the execution of τi in interval [a, b).

Lemma 3: For a work-conserving scheduler, the fol-
lowing relation holds:

Ik(a, b) =

∑

i6=k Ii,k(a, b)

m
.

Since the scheduling algorithm in use is work-
conserving, in the time instants in which a job is ready
but not executing, each processor must be occupied by a
job of another task. Since Ik,k(a, b) = 0, we can exclude
the contribution of τk to the interference.

Lemma 4:

Ik(a, b)≥x ⇐⇒
∑

i6=k

min (Ii,k(a, b), x)≥mx.

Proof:
Only If. Let ξ be the number of tasks for which

Ii,k(a, b) ≥ x. If ξ > m, then
∑

i6=k min(Ii,k(a, b), x) ≥
ξx > mx. Otherwise (m − ξ) ≥ 0 and, using Lemma 3
and Equation (1),
∑

i6=k

min (Ii,k(a, b), x) = ξx +
∑

i:Ii,k<x

Ii,k(a, b) = ξx +

mIk(a, b)−
∑

i:Ii,k≥x

Ii,k(a, b) ≥ ξx + mIk(a, b)−ξIk(a, b) =

ξx + (m− ξ)Ik(a, b) ≥ ξx + (m− ξ)x = mx.

If. Note that if
∑

i min (Ii,k(a, b), x) ≥ mx, it follows
that

Ik(a, b)=
∑

i6=k

Ii,k(a, b)

m
≥

∑

i6=k

min (Ii,k(a, b), x)

m
≥

mx

m
=x.

Now we are ready to give a first schedulability con-
dition. It is clear that, for a job to meet its deadline, the
total interference on the task in the interval between the
release time and the deadline of the job must be less than
or equal to its slack time Dk − Ck. Hence, for a task to
be schedulable, the condition must hold for all its jobs.
We define the worst-case interference for task τk as:

Ik = max
j

(Ik(rj
k, dj

k)) = Ik(rj∗
k , dj∗

k),

where j∗ is the job instance in which the total interfer-
ence is maximal. To simplify the notation, we define:

Ii,k = Ii,k(rj∗
k , dj∗

k).

Theorem 5: A task set τ is schedulable on a multipro-
cessor composed by m identical processors iff for each
task τk

∑

i6=k

min
(

Ii,k, Dk − Ck + 1
)

< m(Dk − Ck + 1). (4)

Proof:
If. If Equation (4) is valid, from Lemma 4 we have Ik <

(Dk−Ck+1). Therefore, for the integer time assumptions,
job Jj∗

k will be interfered for at most Dk−Ck time units.

From the definition of interference, it follows that Jj∗
k

(and therefore every other job of τk) will complete after
at most Dk time-units and the task τk is schedulable.

Only If. The proof is by contradiction. If
∑

i6=k min
(

Ii,k, Dk − Ck + 1
)

≥ m(Dk − Ck + 1), then

Ik =
∑

i6=k Ii,k

m
≥

∑

i6=k min(Ii,k,Dk−Ck+1)
m

≥ m(Dk−Ck+1)
m

=
Dk−Ck + 1, hence task τk is not schedulable.

To better understand the key idea behind Theorem 5,
consider again the situation depicted in Figure 1. It is
clear that when a task τk is executing, it cannot be
interfered. To check the schedulability of τk, we do not
want to consider as interfering contribution the work
done in parallel by other tasks while τk is executing.
If τk does not miss its deadline, it will execute for Ck

time-units, and the total interference is strictly less than
(Dk − Ck + 1). The theorem says that to check if τk can
suffer enough interference in a window [rj

k, dj
k) to cause

a deadline miss, it is sufficient to consider the sum of the
interfering contributions Ii,k(rj∗

k , dj∗
k) of the other tasks

τi, limiting each contribution to at most (Dk − Ck + 1)
time-units.

4.2 Workload

The necessary and sufficient schedulability condition
expressed by Theorem 5 cannot be used to check if a task
set is schedulable without knowing how to compute the
interference terms Ii,k’s. Unfortunately, we are not aware
of any strategy that can be used to compute the worst-
case interferences starting from given task parameters.
To sidestep this problem, we will use an upper bound
on the interference. The test derived will then represent
only a sufficient condition. From Lemma 2, we know that
an upper bound on the interference Ii,k is the workload
Wi(r

j∗
k , dj∗

k). Since evaluating the worst-case workload is
still a complex task, we will again use an upper bound
on it.

To derive a safe upper bound on the workload that
a task can produce in a considered interval, we are
interested in finding the densest possible packing of jobs
that can be generated by a legal schedule. Since, at this
moment, we are not relying on any particular schedul-
ing policy, no information can be used on the priority
relations among the jobs involved in the schedule.

To simplify the presentation, we will call carry-in εk

of a task τk in an interval [a, b) the amount of execution
produced by a job of τk having release time before a
and deadline after a. Similarly, the carry-out zk will be the
amount of execution of a job of τk having release time in
[a, b) and deadline after b. Notice that in the constrained
deadline model there is at most one carry-in and one
carry-out job. We will denote them, respectively, as Jε

i

and Jz
i .

With these premises and as long as there are no
deadline misses, a bound on the workload of a task τi in
a generic interval [a, b) can be computed considering a
situation in which the carried-in job Jε

i starts executing
as close as possible to its deadline and right at the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 6

rh
i dh

i r
h+1

i
d

h+1

i r
h+2

i
d

h+2

i

a bL

TiTi−Di

Fig. 2: Densest possible packing of jobs of task τi in
interval [a, b).

beginning of the interval (therefore a = dε
i − Ci) and

every other instance of τi is executed as soon as possible.
The situation is represented in Figure 2.

Since a job Jj
i can be executed only in [rj

i , d
j
i) and for

at most Ci time units, it is immediate to see that the
depicted situation provides the highest possible amount
of execution in interval [a, b): moving the interval back-
wards, the carry-in cannot increase, while the carry-out
can only decrease. Instead, advancing the interval, the
carry-in will decrease, while the carry-out can increase
by at most the same amount. The situation is periodic.

Based on Figure 2, we now compute the effective
workload of task τi in an interval [a.b) of length L in
the situation described above. Note that the first job of
τi after the carry-in, is released at time a + Ci + Ti −Di.
The next jobs are then released periodically every Ti

time units. Therefore the number Ni(L) of jobs of τi that
contribute with an entire WCET to the workload in an
interval of length L is at most

(⌊

L−(Ci+Ti−Di)
Ti

⌋

+ 1
)

. So,

Ni(L) =

⌊

L + Di − Ci

Ti

⌋

. (5)

The contribution of the carried-out job can then be
bounded by min(Ci, L +Di−Ci−Ni(L)Ti)). A bound on
the workload of a task τi in a generic interval of length
L is then:

Wi(L) = Ni(L)Ci + min(Ci, L + Di −Ci −Ni(L)Ti). (6)

We are now ready to state the first polynomial com-
plexity schedulability test valid for task systems sched-
uled with work-conserving global scheduling policies on
multiprocessor platforms.

Theorem 6: A task set τ is schedulable with any work-
conserving global scheduling policy on a multiprocessor
platform composed by m identical processors if for each
task τk ∈ τ

∑

i6=k

min (Wi(Dk), Dk − Ck + 1) < m(Dk − Ck + 1). (7)

Proof: Since no assumption has been made on the
scheduling algorithm used, Equation (6) is valid for any
work-conserving scheduling algorithm. Using Lemma 2,
we then have

Ii,k = Ii,k(rj∗
k , rj∗

k + Dk) ≤Wi(r
j∗
k , rj∗

k + Dk) ≤Wi(Dk).

The theorem follows from Theorem 5, using Wi(Dk) as
an upper bound for Ii,k.

......
rh
i dh

i r
h+1

i
d

h+1

i r
h+2

i
d

h+2

i

r
j

k
d

j

k

Dk

εi Ti

Fig. 3: Scenario that produces the maximum possible
interference of task τi on a job of task τk when EDF is
used.

The above schedulability test consists of n inequalities
and can be performed in polynomial time.

Nevertheless, when the algorithm in use is known, this
information can be used to derive tighter conditions. As
an example we will hereafter consider the EDF and FP

cases.

4.3 Schedulability test for EDF

When tasks are scheduled according to EDF, a better
upper bound can be found for Ii,k. The worst case
situation can be improved by noting that no carried-
out job can interfere with task τk in the considered
interval [rj∗

k , dj∗
k): since a carry-out job has, by definition,

deadline after dj∗
k , it will have lower priority than τk,

according to EDF. We can then refine the worst-case
situation to be used to compute an upper bound on the
interference of a task in [rj∗

k , dj∗
k). As shown in [7], we can

consider the situation in which the carried-out job Jz
i has

its deadline at the end of the interval — i.e., coincident
with a deadline of τk — and every other instance of τi

is executed as late as possible. The situation is depicted
in Figure 3.

An upper bound on the interference can then be easily
derived analyzing the above situation. We will again
consider the workload in the corresponding interval
[rj∗

k , dj∗
k) of length Dk. There are many possible formulas

to express such workload. We choose to separate the
contribution of the first job contained in the interval (not
necessarily the carry-in job) from the rest of the jobs of τi.
Each one of the jobs after the first one contributes for an

entire worst-case computation time. There are
⌊

Dk

Ti

⌋

such

jobs. Instead, the first job contributes for Dk −
⌊

Dk

Ti

⌋

Ti,

when this term is lower than Ci. We therefore obtain the
following expression:

Ii,k ≤

⌊

Dk

Ti

⌋

Ci + min

(

Ci, Dk−

⌊

Dk

Ti

⌋

Ti

)

.
= Ii,k. (8)

A schedulability test for EDF immediately follows.
Theorem 7: A task set τ is schedulable with global EDF

on a multiprocessor platform composed by m identical
processors if for each task τk ∈ τ

∑

i6=k

min (Ii,k, Dk−Ck+1) < m(Dk − Ck + 1). (9)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 7

For EDF-scheduled systems, this condition is tighter
than the condition expressed by Theorem 6.

4.4 Schedulability test for FP

When analyzing a task set scheduled with fixed priority,
the upper bound on the interference given by Equa-
tion (8) cannot be used. Nevertheless, it is still possible to
use the general bound given by Equation (6) that is valid
for any work-conserving scheduling policy. However the
tightness of this bound can be significantly improved for
FP by noting that the interference from tasks with lower
priority is always null. Theorem 6 can then be modified
by limiting the sum of the interfering terms to the tasks
with priority higher than τk’s. The following theorem
assumes tasks are ordered with decreasing priority.

Theorem 8: A task set τ is schedulable with fixed
priority on a multiprocessor platform composed by m
identical processors if for each task τk ∈ τ
∑

i<k

min (Wi(Dk), Dk − Ck + 1) < m(Dk − Ck + 1). (10)

5 CONSIDERATIONS

The effectiveness of the schedulability conditions given
by Theorem 6, 7 and 8 is magnified in presence of
heavy tasks. One of the main differences between our
work and the results presented in [6] and [7] lies in term
Dk −Ck + 1 in the minimum. This term directly derives
from term Dk − Ck + 1 in Theorem 5. The underlying
idea is that when considering the interference of a heavy
task τi over τk, we do not want to overestimate its
contribution to the total interference. If we consider its
entire load when we sum it together with the load of the
other tasks on all m processors, its contribution could
be much higher than the real interference. Since we
do not want to overestimate the total interference, we
must consider only the fraction of the workload that can
actually interfere with task τk. When no task misses its
deadline, this fraction is bounded by Dk − Ck.

Example 1

Consider a task set τ composed of three tasks, each one
with deadline equal to period, to be scheduled with EDF

on a platform composed by m = 2 identical processors:
τ = {(20, 30, 30); (20, 30, 30); (5, 30, 30)}. It can be verified
that both GFB and the test proposed in [7] fail. Instead,
using Theorem 7, we have that the amount of interfer-
ence we can consider on τ1 (or τ2) can be bounded by
D1−C1 +1 = 11. The upper bound on the total interfer-
ence is therefore given by min(20, 11) + min(5, 11) = 16,
which is less than m(D1−C1+1) = 22. Similarly, for task
τ3 the bound is min(20, 25) + min(20, 25) = 40, which is
less than m(D3 − C3 + 1) = 52, and the test is passed.

Even if the derived algorithms contribute increasing
the number of schedulable task sets that can be detected,
it is possible to show that the absolute performances

of these tests and of any other schedulability test with
comparable complexity previously proposed [6], [7], [8],
[9], [10], [11], [12], [13], [14] are still far from being tight.
In Section 7 we will show that these algorithms reject
many schedulable task sets among a randomly generated
distribution.

As for what concerns our tests, the problem is mainly
due to the imprecise computation of the carry-in contri-
bution to the total interference. Basically, in the proofs
of our results, we assumed that the carried-in job (in the
EDF case) or the first job (in the general and FP cases) of
the interfering tasks is as close as possible to its deadline.
This means assuming that every interfering task τi is as
well interfered for Di−Ci time units, which is an overly
pessimistic assumption, as the next example shows.

Example 2

Consider a task set τ composed by τ1 = (1, 1, 1) and τ2 =
(1, 10, 10) to be scheduled with EDF on m = 2 processors.
When applying Theorem 6 to check the schedulability of
the task set, we find a negative result, due to the positive
interference imposed by τ2 on τ1. However, it is easy to
see that the task set is schedulable on 2 processors.

A less trivial example can be found by adding two
more tasks τ3 and τ4 equal to τ2. The test of Theorem 6
still fails because it assumes that the light tasks can
receive enough interference to be pushed close to their
deadline and interfere with τ1. However, it is possible to
show that the task set is schedulable: when the deadlines
of τ1 and τ2 coincide, a job of τ2 would need to be pushed
forward for D2 − C2 = 9 time-units to interfere with
τ1. But the maximum interference that τ2 can receive
is lower, as can be seen using the upper bound on the
interferences given by Equation (8) with k = 2:

I2 ≤

∑

i6=2 Ii,2

m
≤

∑

i6=2 Wi(r
j∗
2 , dj∗

2)

m
≤

10 + 1 + 1

2
= 6.

Therefore, τ2, as well as τ3 and τ4, will never be able to
interfere with τ1, and the task set is schedulable.

To improve the performances of our test, a tighter esti-
mation of the interference imposed by a task τi on a task
τk is needed. The following section will formally describe
an iterative approach to overcome the drawbacks of the
schedulability tests presented in Section 4.

6 ITERATIVE TEST

The technique used in Example 2 to prove that the
proposed task set is schedulable suggests an iterative
method to improve the estimation of the carry-in of
an interfering task. By calculating the maximum inter-
ference a task τk can be subjected to, it is possible to
know how close to its deadline a job Jj

k can be pushed.
The lower the interference, the highest is the distance
between the job finishing time f j

k and its deadline dj
k.

We call this difference slack Sj
k of job Jj

k : Sj
k = dj

k − f j
k .

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 8

The slack Sk of task τk is instead the minimum slack
among all jobs of τk: Sk = minj(d

j
k − f j

k).
If the slack of a task τk is known, then it is possible

to improve the estimation of the interference that τk

can impose on other tasks. A positive slack will allow
one to consider a less pessimistic situation than the
one depicted in Figures 2 and 3. When Sk > 0, the
densest possible packing of jobs of τk will produce a
lower workload in the considered interval. In this case,
a tighter upper bound on the interference can be used,
with beneficial effects on the schedulability analysis.

As before, we will first derive a general condition that
is valid for any work-conserving scheduling algorithm,
adapting it later to the EDF and FP cases.

6.1 Iterative test for general scheduling algorithms

Before introducing slack values to tighten the schedula-
bility conditions, we first show how to compute these
terms for a given task set. However, computing the
minimum slack time of a task in a multiprocessor system
is not as easy as it is for classic uniprocessor systems.
The next theorem shows a relation between the slack of
a task τk and the interferences imposed by other tasks
on it.

Theorem 9: The slack of a task τk scheduled on a multi-
processor platform composed by m identical processors
is given by

Sk = Dk − Ck −

⌊

∑

i6=k min(I i,k, Dk − Ck + 1)

m

⌋

, (11)

when Equation (11) is positive.
Proof: When the right hand term of Equation (11)

is positive,

⌊

∑

i6=k
min(Ii,k,Dk−Ck+1)

m

⌋

≤ Dk − Ck. Since

x < bxc+1:
∑

i6=k min(Ii,k, Dk− Ck +1) < m(Dk − Ck +

1). Applying Lemma 4, we have Ik < (Dk − Ck + 1).
Lemma 1 then gives Ii,k ≤ Ik < (Dk−Ck +1). Therefore,

min(I i,k, Dk − Ck + 1) = Ii,k. (12)

Now, remember that Jj∗
k is the job the suffers the

maximum interference among all jobs of τk. From the
definition of slack, it follows Sk = minj(d

j
k − f j

k) =
dj∗

k − f j∗
k = (rj∗

k + Dk)− (rj∗
k + Ck + Ik)) = Dk −Ck − Ik.

From the integer time assumption, Ik = bIkc. Using
Lemma 3 and Equation (12), Sk = Dk−Ck−

⌊

Ik

⌋

= Dk−

Ck −

⌊

∑

i6=k
Ii,k

m

⌋

= Dk − Ck −

⌊

∑

i6=k
min(Ii,k,Dk−Ck+1)

m

⌋

,

proving the theorem.
To make use of the above result, we need to compute

each interference term Ii,k. Since we are not able to
perform this computation in a reasonable amount of
time, we will instead use an upper bound on Ii,k by
exploiting the bounds we derived in Section 4. For task
systems scheduled with a work-conserving algorithm,
we have Wi(Dk) ≥ Ii,k. A lower bound Slb

k on the slack

rh
i dh

i r
h+1

i d
h+1

i r
h+2

i d
h+2

i

Ti − Di

La b

Slb
i

Ti

Fig. 4: Densest possible packing of jobs of τi, when Slb
i

is a safe lower bound on the slack of τi.

Sk of a task τk is then given by

Slb
k = Dk − Ck −

⌊

∑

i6=k min(Wi(Dk), Dk − Ck + 1)

m

⌋

,

(13)
where Wi(Dk) is given by Equation (6).

When a lower bound on the slack of a task τi is
available, it is possible to give an even tighter upper
bound on the interference τi can cause, and use this
information either when checking the schedulability of
other tasks or when computing their slack parameters. If
the value Slb

i is positive, every job of τi will complete at
least Slb

i time-units before its deadline. An upper bound
on the maximum possible workload of τi in an interval
of length L can then be derived analyzing the situation
in Figure 4, which represents a less pessimistic situation
then the one in Figure 2. When a lower bound on the
slack value of τi is known, we override the expression
of Wi(L) as follows:

Wi(L, Slb
i) = Ni(L, Slb

i)Ci + min(Ci,L+Di−Ci−Slb
i −

Ni(L, Slb
i)Ti), (14)

with

Ni(L, Slb
i) =

⌊

L + Di − Ci − Slb
i

Ti

⌋

. (15)

Note that, when a lower bound on Si is not known,
we can simply use Slb

i = 0. In this case, Equation (14)
and (15) reduce to the original expressions given by
Equation (6) and (5). With these conventions, next theo-
rem follows from Theorem 9.

Theorem 10: A lower bound on the slack of a task τk

scheduled on a multiprocessor platform composed by m
identical processors is given by

Slb
k = Dk−Ck−

⌊

∑

i6=k min(Wi(Dk, Slb
i), Dk−Ck+1)

m

⌋

,

(16)
when this term is positive.

Theorem 10 allows deriving an iterative method to
check the schedulability of a task set scheduled with
a work-conserving global scheduling algorithm on a
multiprocessor platform:

• For every task in the task set, a lower bound value
on the slack of the task is created and initially set
to zero.

• Equation (16) is then used to compute a new value
of the slack lower bound of the first task, with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 9

SCHEDULABILITYCHECK(τ)

� Check the schedulability of task set τ .
Slb

k ← 0 (∀k), Updated ← true, Nround ← 0.
1 while (Updated && Nround < Nround_limit)
2 do

3 Feasible← true
4 Updated← false
5 for k ← 1 to n

� Try to update Slb
k .

6 NewBound← SLACKCOMPUTE(τk)
7 if (NewBound < 0) Feasible← false
8 else if (NewBound > Slb

k)
9 { Slb

k ← NewBound
10 Updated← true }

end for

11 Nround+ +
� When no task is infeasible, τ is schedulable.

12 if (Feasible) return true

done

� Stop when no slack can be updated.
13 return false

Fig. 5: Iterative schedulability test for work-conserving
scheduling algorithms.

SLACKCOMPUTE(τk)

� Computes a lower bound on the slack of τk,
depending on the scheduling algorithm in use

1 case (EDF) : Bound← Equation (18)
2 case (FP) : Bound← Equation (19)
3 else : Bound← Equation (16)
4 return (Bound)

Fig. 6: Function computing the proper slack lower bound
for EDF, FP and general work-conserving schedulers.

Wi(D1, S
lb
i) and Ni(D1, S

lb
i) given by Equation (14)

and (15). If the computed value is positive, the up-
per bound is accordingly updated. If it is negative,
the value is left to zero and the task is marked as
”temporarily not schedulable”.

• The previous step is repeated for every task in the
task set.

• If no task has been marked as temporarily not
schedulable, the task set is declared schedulable. Oth-
erwise, another round of slack updates is performed
using the slack lower bounds derived at the pre-
vious cycle. If during a complete round no slack
is updated, the iteration stops and the task set is
declared not schedulable.

Basically, if it is not possible to derive a positive lower
bound on the slack for a task τk using Equation (16), this
task will be temporarily set aside, waiting for a slack
update (i.e., increase) of potentially interfering tasks; if
no update takes place during a complete iteration for all

rh
i dh

i r
h+1

i d
h+1

i r
h+2

i d
h+2

i

r
j

k
d

j

k

Dk

εi Slb
i Ti

Fig. 7: Scenario with the maximum possible interference
of τi on a job of τk with EDF, when Slb

i is a safe lower
bound on the slack of τi.

tasks in the system, than there is no possibility for further
improvements and the test fails. Otherwise, a higher
slack value of a task τi could result in a sufficiently
tighter upper bound on the interference on τk, so that
the schedulability of τk could now be positively verified.
Since Wi(L, Slb

i) is a non-increasing function of Slb
i , the

convergence of the algorithm is guaranteed.
A more formal version of the schedulability algorithm

is given by procedure SCHEDULABILITYCHECK in Fig-
ure 5. For now, suppose Nround_limit = ∞. When
neither EDF nor FP scheduling algorithms are used,
procedure SLACKCOMPUTE(τk) should select the slack
lower bound value given by Equation (16). The iteration
continues updating the lower bounds on the slack values
until either no more update is possible, or every task has
been verified to be schedulable.

6.2 Iterative test for EDF

When tasks are scheduled with EDF it is possible to use
a tighter bound on the interference Ii,k. As in Section 4.3,
we will consider the worst-case workload produced by
an interfering task τi when it has an absolute deadline
coincident to a deadline of τk, and every other instance
of τi is executed at the latest possible instant.

When a lower bound on the slack of τi is known,
the upper bound on Ii,k given by Equation (8) can
be tightened. Consider the situation in Figure 7. We
express the workload of τi in [rj∗

k , dj∗
k) separating the

contributions of the first job of τi having deadline inside
the considered interval, from the contributions of later

jobs of τi. There are
⌊

Dk

Ti

⌋

later jobs, each one contribut-

ing for an entire worst-case computation time. Instead,

the first job contributes for max
(

0, Dk − Slb
k −

⌊

Dk

Ti

⌋

Ti

)

,

when this term is lower than Ci. We therefore obtain the
following expression:

Ii,k ≤

⌊

Dk

Ti

⌋

Ci + min

(

Ci,

(

Dk−Slb
i −

⌊

Dk

Ti

⌋

Ti

)

0

)

.
= Ii,k(Slb

i). (17)

Again, when a lower bound on Si is not known, we
can simply use Slb

i = 0. In this case, Equation (17)
reduces to Equation (8). The next theorem then follows
from Theorem 9.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 10

Theorem 11: A lower bound on the slack of a task
τk scheduled with EDF on a multiprocessor platform
composed by m identical processors is given by

Slb
k = Dk − Ck −

1

m

∑

i6=k

min
(

Ii,k(Slb
i), Dk − Ck + 1

)

 ,

(18)
when this term is positive.

For EDF-scheduled tasks, Equation (18) allows deriv-
ing a slack lower bound tighter than the one given by
Equation (16).

The iterative method we described for general work-
conserving algorithms, applies as well to the EDF

case. The only difference lies at line 1 of procedure
SLACKCOMPUTE(τk) in Figure 6, where the bound given
by the left hand side of Equation (18) is selected for EDF-
scheduled systems.

6.3 Iterative test for FP

Since using fixed priority scheduling the interference
caused by lower priority tasks is always null, Theo-
rem 10 can be modified limiting the sum of the interfer-
ing terms to the higher priority tasks. Assuming tasks are
ordered with decreasing priority, next theorem follows.

Theorem 12: A lower bound on the slack of a task
τk scheduled with fixed priority on a multiprocessor
platform composed by m identical processors is given
by

Slb
k = Dk−Ck−

⌊

∑

i<k min(Wi(Dk, Slb
i), Dk − Ck + 1)

m

⌋

,

(19)
when this term is positive.

To apply the previously described iterative method
to systems scheduled with FP, we can still use proce-
dure SCHEDULABILITYCHECK(τ). In this case, the func-
tion SLACKCOMPUTE(τk) will select the bound given
at line 2. However, there is an important difference
from the EDF and the general case: for fixed priority
systems, when a task is found temporarily not schedu-
lable during the first iteration, the test can immedi-
ately stop and return a false value. In fact, there is no
hope that this result could be improved with succes-
sive tighter estimations of the interferences produced
by lower priority tasks. In other words, suppose that
procedure SLACKCOMPUTE(τk) returns a negative slack
lower bound for a task τk. The considered contribution to
the total interference given by tasks with priority lower
than τk’s is null. Since the slack values are updated in
order of task priority starting from the highest priority
task, we know that later slack updates cannot further
reduce the interference on τk or on higher priority tasks.
Therefore, later calls to function SLACKCOMPUTE(τk)
will always return the same negative value, eventually
failing the test.

This observation allows limiting the number of
slack updates to one for each task. This can be

done by choosing Nround_limit = 1 in procedure
SCHEDULABILITYCHECK(τ) when the scheduler is FP.
The result will be a significant reduction in the com-
plexity of the schedulability test.

7 EXPERIMENTAL RESULTS

In this section, we compare the tests derived in this
paper with the best existing tests for the schedulability
analysis of global scheduling algorithms for identical
multiprocessor platforms.

For the EDF case, we will consider the following
schedulability algorithms:

• the linear complexity test in [6] in the modified
version for constrained deadline systems given by
Theorem 3 (GFB);

• the O(n3) test described in [13] (BAK);
• our first EDF schedulability test in Theorem 7

(BCL EDF);
• the iterative test given by procedure

SCHEDULABILITYCHECK(τ) in Figure 5 when
EDF is used (I-BCL EDF).

Among schedulability tests for FP, we will instead
compare the following algorithms, assuming the Dead-
line Monotonic (DM) priority assignment is used:

• the linear complexity test (derived in [11]) given by
the density bound of Theorem 4 (DB);

• the O(n3) test described in [14] (BC);
• our first FP test in Theorem 8 (BCL FP);
• the iterative test given by procedure

SCHEDULABILITYCHECK(τ) in Figure 5 for fixed
priority systems (I-BCL FP).

For general work-conserving schedulers, we are not
aware of any previously proposed schedulability test.
We will therefore show only the behavior of our
tests given by Theorem 6 (BCL) and by procedure
SCHEDULABILITYCHECK(τ) when no useful information
on the scheduler is available (I-BCL).

As a last term of comparison, we decided to compute
as well the number of task sets that pass the load-
based sufficient feasibility test in [23] (FB). Task systems
passing this test are feasible on a given multiprocessor
platform, meaning that there exist at least one scheduling
algorithm that is able to meet every deadline. However,
no information is given on which algorithm can be
used to successfully schedule the task set, limiting the
practical application of such a test. Remember instead
that BCL detects task sets that are schedulable with
any (work-conserving) scheduling algorithm, which is a
stronger claim.

We applied all above tests to a randomly generated
distribution of task sets. The simulations have been per-
formed varying the number of processors, the number
of tasks and the total system utilization.

Every task has been generated in the following way:
utilization extracted according to exponential distribu-
tion with mean σu = 0.25, re-extracting tasks with
utilization Ui > 1; period (and, implicitly, execution

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 11

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

FB

I-BCL EDF

GFB

BAK

BCL EDF

I-BCL

BCL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

I-BCL FP

BCL FP

BC

FB

DB

I-BCL

BCL

Fig. 8: Experiment with 2 processors and σu = 0.25 for
EDF (top) and FP (bottom).

time) from a uniform distribution in [0, 2000]; deadline
from a uniform distribution between Ci and Pi.

For each experiment we generated 1.000.000 task sets
according to the following procedure:

1) Initially, we extract a set of m + 1 tasks.
2) We then verify if the generated task set passes a

necessary condition for feasibility proposed in [24].
3) If the answer is positive, we test all above men-

tioned schedulability algorithms for the generated
set. Then, we create a new set by adding a new
task to the old set, and return to the previous step.

4) When the necessary condition for feasibility in [24]
is not passed, it means that no scheduling algo-
rithm could possibly generate a valid schedule. In
this case the task set is discarded, returning to the
first step.

This method allows generating task sets with a progres-
sively higher number of elements, until the necessary
condition for feasibility is violated.

The results are shown in the following histograms.
Each line represents the number of task sets proved
schedulable by one specific test. The curves are drawn
connecting a series of points, each one representing the

collection of task sets that have total utilization in a range
of 4% around the point. To give an upper bound on the
number of feasible task sets, we included a continuous
curve labeled with TOT, representing the distribution of
valid task sets extracted, i.e., the number of generated
task sets that meets the necessary condition for multi-
processor feasibility in [24]. To help understanding the
relative performances of the various algorithms, keys are
always ordered according to the total number of task sets
detected by the corresponding test: tests with a lower key
position detect a lower number of task sets.

In Figure 8, we show the case with m = 2 proces-
sors. In the upper histogram we plotted the number
of task sets detected by all EDF-based schedulability
tests (GFB, BAK, BCL EDF and I-BCL EDF), while the
lower histogram represents all tests for FP (DB, BC,
BCL FP and I-BCL FP). In both histograms we included
the curves of the two tests that are applicable to any
work-conserving scheduler (BCL and I-BCL), as well
as the curves corresponding to the feasibility tests: the
sufficient one (FB) and the necessary one (TOT).

The test that gives the best performances among EDF-
based schedulability tests is I-BCL EDF: it significantly
outperforms every existing schedulability test for EDF.
For utilizations higher than 0.5, I-BCL EDF detects more
than twice the task sets detected by GFB, which is in
this case the best test among the existing ones. BAK and
BCL EDF have much lower performances, comparable
to the performances of the general tests valid for any
work-conserving scheduler (BCL and I-BCL). Less than
1% of the generated task sets is found schedulable by
an existing algorithm for EDF but not by I-BCL EDF.
The huge gap between I-BCL EDF and BCL EDF shows
the power of the iterative approach that at each round
refines the estimation of the slack values. Note that, as
anticipated in Section 3, BAK does not dominate GFB
when deadlines are different than periods.

It is worth noting that I-BCL EDF almost detects as
many task sets as FB. Remember that FB gives just a
sufficient feasibility condition, without giving any in-
formation on which scheduler could effectively produce
a valid schedule for the given task set. I-BCL EDF can
instead detect a comparable number of schedulable task
sets, knowing that EDF can be used to schedule them.

Looking at the lower histogram, it is possible to see
that with fixed priority the results are even better. This
time I-BCL FP outperforms even FB. Considering the
lower complexity of the FP version of our iterative test,
this is a very interesting result. The next best test is
BCL FP, which is much closer to the iterative version of
the test than in the EDF case. This is due to the limitation
Nround_limit = 1 when a fixed priority scheduler is
used, as we explained in Section 6.3. Regarding other
tests, less than 0.5% of the generated task sets is found
schedulable by an existing algorithm for FP but not by I-
BCL FP. BC has a fairly good behavior but has a higher
complexity, as we will show later on.

Changing the mean utilization of the generated task

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 12

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

I-BCL FP

BCL FP

BC

FB

I-BCL EDF

GFB

DB

BAK

BCL EDF

I-BCL

BCL

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

I-BCL FP

BCL FP

BC

I-BCL EDF

FB

GFB

BCL EDF

I-BCL

BCL

BAK

DB

Fig. 9: Experiments with 2 processors for σu = 0.10 (top)
and σu = 0.50 (bottom).

sets, the results are similar to the above cases. In Figure 9,
we show the cases with σu = 0, 10 and σu = 0.50, for
all general, EDF and FP schedulability tests. Even if the
shape of the curves slightly changes, the relative order-
ing of the tests in terms of schedulability performances
remains more or less the same.

The leftmost histogram in Figure 10 presents the case
with 4 processors. The situation is more or less the same
as before. The higher distance from the TOT curve is mo-
tivated by the worse performances of EDF and DM when
the number of processor increases, and does not seem
a weak point of our analysis. The algorithms that suffer
the most significant losses are GFB, FB, BAKand DB.
Further increasing the number of processors to m = 8
and m = 16, the above results are magnified and our
iterative algorithms are always the remaining histograms
of Figure 10. Note that to reduce the complexity of
the simulations for the cases with 8 and 16 processors,
we did not consider the most time-consuming or least
performing tests (FB, BAK, DB). For the same reason, we
replaced the necessary condition for feasibility used in
the task generation phase (the pseudo-polynomial test
in [24]) with a simpler condition: Utot ≤ m. This weaker

condition causes a change in the shape of the TOT curve,
accepting a larger number of unschedulable task sets.

8 COMPUTATIONAL COMPLEXITY

The schedulability tests of Theorems 6, 7 and 8 are
composed by n inequalities, each one requiring a sum
of n terms. The overall complexity is therefore O(n2).

Instead, the complexity of the iterative tests intro-
duced in Section 6 depends on the number of times the
lower bound on the slack of a task can be updated. Con-
sider procedure SCHEDULABILITYCHECK in Figure 5. For
now, suppose Nround_limit =∞. A single invocation
of function SLACKCOMPUTE takes O(n) steps. Since, the
for cycle at line 5 calls this function once for each task,
the complexity of a single iteration of slack updates is
O(n2). Now, the outer cycle is iterated as long as there is
a change in one of the slack values. Since, for the integer
time assumption, the slack lower bound of a task τk can
be updated at most Dk−Ck times, a rough upper bound
on the total number of iterations of the while cycle at
line 1 is

∑

k(Dk−Ck) = O(nDmax). Therefore the overall
complexity of the algorithm is O(n3Dmax). Anyway, the
complexity can be significantly reduced if the test is
stopped after a finite number Nround_limit of iter-
ations. If this is the case, the total number of steps taken
by the schedulability algorithm is O(n2Nround_limit).

For the FP case, we know from Section 6.3 that
setting Nround_limit = 1 does not degrade the
schedulability performances of the test. For EDF and
for the general case, instead, limiting the number of
cycles to a small value could reduce the number of
admitted task sets, rejecting some schedulable task set
that could otherwise be admitted after a few more
steps. However, the schedulability loss is negligible even
with very low Nround_limit’s. We performed experi-
ments for different values of Nround_limit: 1, 2, 3,∞.
When the slack upper bound is updated at most once
for each task, the behavior of procedure SCHEDULABI-
LITYCHECK in the EDF case is almost identical to the
test given by Theorem 7 (BCL EDF). When two updates
for each task are allowed, the number of schedulable
task sets found by the iterative algorithm increases
dramatically. For Nround_limit = 3, the test detects
almost every task set that can be detected using an un-
bounded Nround_limit. This means that using proce-
dure SCHEDULABILITYCHECK with Nround_limit = 3,
or slightly higher values, we obtain an efficient solution
to detect a high number of schedulable task sets, at low
computational effort. The low complexity (O(n2)) of the
test suggests the application of this algorithm to systems
with very strict timely requirements and for run-time
admission control.

9 CONCLUSIONS

We developed a new schedulability analysis of real-time
systems globally scheduled on a platform composed by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 13

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 0.5 1 1.5 2 2.5 3 3.5 4

N
um

be
r

of
 d

et
ec

te
d

ta
sk

 s
et

s

Task set utilization

TOT

I-BCL FP

BCL FP

BC

I-BCL EDF

FB

GFB

BCL EDF

I-BCL

BCL

DB

BAK

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3 4 5 6 7 8

Task set utilization

TOT

I-BCL FP

BCL FP

BC

I-BCL EDF

BCL EDF

I-BCL

BCL

GFB

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12 14 16

Task set utilization

TOT

I-BCL FP

BCL FP

BC

I-BCL EDF

BCL EDF

I-BCL

BCL

GFB

Fig. 10: Experiments with σu = 0.25 for 4 (left), 8 (center) and 16 (right) processors.

identical processors. We presented sufficient schedulabil-
ity algorithms that are able to check in polynomial and
pseudo-polynomial time whether a periodic or sporadic
task set can be scheduled on a multiprocessor platform.
The tests we proposed vary in terms of computational
complexity and number of schedulable task sets de-
tected. Our experiments show that the iterative algo-
rithm given by procedure SCHEDULABILITYCHECK de-
tects the highest number of schedulable task sets among
all existing tests. Only a negligible percentage of task sets
is detected by some algorithm in literature but not by our
iterative test. This improvement in term of schedulable
task sets detected is given at a low computational cost.
This consideration suggests the use of our iterative test
also for run-time admission control.

Even if we contributed to significantly increase the
number of schedulable task sets that can be detected at
a reasonable computational effort, we still do not know
how big is the gap from a hypothetical necessary and
sufficient schedulability condition. Note that the TOT
curve in our simulations does not represent the number of
task set schedulable with EDF or FP, neither it indicates
how many task sets are feasible. If an exact feasibility
test existed, its curve would be below the TOT curve.
A necessary and sufficient schedulability test for EDF

or for FP would have an even lower curve. While an
exponential time exact schedulability test for strictly
periodic fixed priority systems has been proposed in
[25], we are not aware of any such test for sporadic task
sets with deadlines different than periods.

Since the provable superiority of EDF in the uniproces-
sor case cannot be generalized to multiprocessor plat-
forms, there is no known reason why EDF should be
used for non-partitioned approaches2. A simpler fixed
priority scheduler could have similar schedulability per-
formances at a lower implementation cost. Moreover, it
is widely known that Real-Time system developers are
interested in high scheduling performances at least as
much as they are interested in predicting if a deadline
will be missed with such schedulers. Therefore, using an
allegedly better scheduling algorithm that does not come
with a good schedulability test is probably worse than

2. For partitioned systems the optimality of EDF as a local scheduler
continues to be valid.

relying on a simple fixed priority scheduler that can take
advantage of a good test. We showed that the schedu-
lability test we proposed for fixed priority systems (I-
BCL FP) detects the highest number of schedulable task
sets among the existing schedulability algorithms for
globally scheduled multiprocessor systems. Using a sim-
ple FP scheduler in combination with our schedulability
algorithm seems then a good solution for guaranteeing
the hard real-time constraints of a given application.

When a fixed priority scheduler is used, an open ques-
tion is which priority assignment allows scheduling the
highest number of task sets. In our experiments we used
Deadline Monotonic (DM). An interesting task could
be to explore which priority assignment could further
magnify the performances of the I-BCL FP schedulability
test. For example, an option could be to single out
the heaviest tasks assigning them higher priorities and
scheduling the light tasks with DM. In this way, tasks
having tighter timely requirements can execute at a priv-
ileged level, without being interfered by the other tasks.
We intend to analyze this issue in future works, together
with the analysis of more general scheduling algorithms,
like hybrid or dynamic-job-priority schedulers, that are
expected to have a lower gap from a necessary and
sufficient feasibility condition.

Another factor that we intend to include into our
analysis is the blocking time due to the exclusive access
to shared resources. Thanks to the intuitive form of
the slack-based test we presented, we believe that an
extension of our tests to account as well for the blocking
times can be easily derived for the most used shared
resource protocols.

Further improvements on our schedulability analysis
are possible. One of the potential drawbacks of the
approach we followed consists in assuming all tasks
being always maximally interfered. This is an overly pes-
simistic assumption that we introduced to simplify the
final test. We have ideas on how to refine the estimation
of the relative interferences among the various tasks,
increasing the complexity of the schedulability tests.
Anyway, we believe that the algorithms we proposed
here are a good compromise between the number of
schedulable task sets detected and the overall compu-
tational cost.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JUNE 2008 14

REFERENCES

[1] M. Garey and D. Johnson, Computers and Intractability: a Guide to
the Theory of NP-Completeness. W. H. Freeman and company, NY,
1979.

[2] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A
hybrid real-time scheduling approach for large-scale multicore
platforms,” in Proceedings of the Euromicro Conference on Real-Time
Systems, Pisa, 2007.

[3] S. Baruah, N. Cohen, G. Plaxton, and D. Varvel, “Proportionate
progress: A notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600–625, June 1996.

[4] J. Anderson and A. Srinivasan, “Pfair scheduling: Beyond peri-
odic task systems,” in Proceedings of the International Conference
on Real-Time Computing Systems and Applications. Cheju Island,
South Korea: IEEE Computer Society Press, December 2000.

[5] P. Holman and J. H. Anderson, “Adapting pfair scheduling for
symmetric multiprocessors,” J. Embedded Comput., vol. 1, no. 4,
pp. 543–564, 2005.

[6] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Real Time Systems,
vol. 25, no. 2–3, pp. 187–205, 2003.

[7] T. Baker, “Multiprocessor EDF and deadline monotonic schedu-
lability analysis,” in Proceedings of the IEEE Real-Time Systems
Symposium. IEEE Computer Society Press, December 2003, pp.
120–129.

[8] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority schedul-
ing on multiprocessors,” in Proceedings of the IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, December
2001, pp. 193–202.

[9] B. Andersson, “Static-priority scheduling on multiprocessors,”
Ph.D. dissertation, Department of Computer Engineering,
Chalmers University, 2003.

[10] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms,” in Proceedings of the
EuroMicro Conference on Real-Time Systems. Palma de Mallorca,
Balearic Islands, Spain: IEEE Computer Society Press, July 2005,
pp. 209–218.

[11] ——, “New schedulability tests for real-time tasks sets scheduled
by deadline monotonic on multiprocessors,” in Proceedings of the
9th International Conference on Principles of Distributed Systems.
Pisa, Italy: IEEE Computer Society Press, December 2005.

[12] T. P. Baker, “An analysis of fixed-priority schedulability on a
multiprocessor,” Real-Time Systems: The International Journal of
Time-Critical Computing, vol. 32, no. 1–2, pp. 49–71, 2006.

[13] ——, “An analysis of EDF schedulability on a multiprocessor,”
IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 8,
pp. 760–768, 2005.

[14] T.P.Baker and M.Cirinei, “A unified analysis of global edf and
fixed-task-priority schedulability of sporadic task systems on
multiprocessors,” Journal of Embedded Computing, 2007, to appear.
TR available at http://www.cs.fsu.edu/research/reports/TR-
060401.pdf.

[15] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations Research, vol. 26, pp. 127–140, 1978.

[16] M. Bertogna, “Real-time scheduling analysis for multiprocessor
platforms,” Ph.D. dissertation, Scuola Superiore Sant’Anna, 2008.

[17] A. Srinivasan and S. Baruah, “Deadline-based scheduling of
periodic task systems on multiprocessors,” Information Processing
Letters, vol. 84, no. 2, pp. 93–98, 2002.

[18] S. Baruah, “Optimal utilization bounds for the fixed-priority
scheduling of periodic task systems on identical multiprocessors,”
IEEE Transactions on Computers, vol. 53, no. 6, 2004.

[19] J. Anderson and A. Srinivasan, “Mixed Pfair/ERfair scheduling
of asynchronous periodic tasks,” in Proceedings of the EuroMicro
Conference on Real-Time Systems. Delft, The Netherlands: IEEE
Computer Society Press, June 2001.

[20] B. Andersson and E. Tovar, “Multiprocessor scheduling with few
preemptions.” in RTCSA, 2006, pp. 322–334.

[21] S. Cho, S. K. Lee, and K.-J. Lin, “On-line algorithms for real-
time task scheduling on multiprocessor systems,” in IASTED
International Conference on Internet and Multimedia Systems and
Applications, Hawaii, August 2001, pp. 395–400.

[22] M. Cirinei and T. P. Baker, “Edzl scheduling analysis,” in ECRTS,
Pisa, Italy, July 2007.

[23] N. Fisher and S. Baruah, “The global feasibility and schedulability
of general task models on multiprocessor platforms,” in Proceed-
ings of the EuroMicro Conference on Real-Time Systems. Pisa, Italy:
IEEE Computer Society Press, July 2007.

[24] T. P. Baker and M. Cirinei, “A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline
tasks,” rtss, vol. 00, pp. 178–190, 2006.

[25] L. Cucu and J. Goossens, “Feasibility intervals for fixed-priority
real-time scheduling on uniform multiprocessors,” in ETFA,
Prague, September 2006.

Marko Bertogna Marko Bertogna graduated
(summa cum laude) in Telecommunications En-
gineering at the University of Bologna (Italy), in
2002. In 2008, he received the Ph.D. in Com-
puter Science from Scuola Superiore Sant’Anna
in Pisa (Italy), where he currently has a post-doc
position. In 2002 he visited TU Delft (Nether-
lands) working on optical devices. In 2006 he
visited the University of North Carolina at Chapel
Hill (US), working with prof. Sanjoy Baruah
on scheduling algorithms for single and multi-

core real-time systems. His research interests include scheduling and
schedulability analysis of real-time multiprocessor systems, protocols
for the exclusive access to shared resources, reconfigurable devices. He
received the 2005 IEEE/Euromicro Conference on Real-Time Systems
Best Paper Award.

Michele Cirinei Michele Cirinei received the
Laurea degree (summa cum laude) in computer
science engineering from the University of Pisa,
Italy, in 2004. In 2007 he received his PhD
degree in computer science from the Scuola
Superiore Sant’Anna in Pisa, Italy, for his re-
search on the use of multiprocessor platforms
for real-time systems. His research particularly
focused on how to improve both computational
power and fault tolerance of systems with strict
time constraints. Since July 2007, he moved to

Arezzo, where he has been employed as software designer by SECO,
an European designer, manufacturer and marketer of high integrated
board computers and systems for embedded applications.

Giuseppe Lipari Giuseppe Lipari graduated
in Computer Engineering at the University of
Pisa in 1996, and received the PhD degree in
Computer Engineering from Scuola Superiore
Sant’Anna in 2000. Currently, he is Associate
Professor of Operating Systems with Scuola
Superiore Sant’Anna. His main research activ-
ities are in real-time scheduling theory and its
application to real-time operating systems, soft
real-time systems for multimedia applications
and component-based real-time systems. He

has been member of the program committes of many conferences
in the field. He is currently Associate Editor of IEEE Transactions on
Computers.

