
A framework for achieving inter-application isolation in

multiprogrammed, hard real-time environments �

Giuseppe Lipari John Carpenter Sanjoy Baruah

Abstract

A framework for scheduling a number of di�erent
real-time applications on a single shared preemptable
processor is proposed. This framework enforces com-
plete isolation among the di�erent applications, such
that the behavior of each application is very similar to
its behavior if it had been executing on a slower ded-
icated processor. A scheduling algorithm that imple-
ments this framework is presented and proved correct.

Keywords. Hard-real-time systems; Preemptive
scheduling; Earliest deadline �rst; Inter-application
isolation.

1. Introduction

When several real-time applications are multipro-
grammed on a single computer system, the underlying
scheduling policy must provide each application with
an appropriate quality of service. In most computing
environments, this necessitates the enforcement of iso-
lation between applications. The scheduler must en-
sure that an errant application should not be able to
cause an unacceptable degradation in performance of
other { well-behaved { applications.

An e�ective conceptual framework for modeling
such systems is to associate a server with each appli-
cation, and have a global scheduler resolve contention
of shared resources among the servers. Each server is
characterized by parameters which specify its perfor-
mance expectations. A feasibility/ admission control
test determines whether a set of servers can be sched-
uled on the available resources by the global scheduler
such that each server receives its expected level of ser-
vice (the level it would receive on a slower, dedicated
system). If so, the global scheduler allocates resources

�Supported in part by the National Science Foundation
(Grant Nos. CCR-9704206, CCR-9972105, and CCR-9988327).

at run-time in such a manner that each server's perfor-
mance expectations are met. Each server is still respon-
sible for scheduling competing jobs generated by its ap-
plication, the global scheduler only makes the sharing
of resources among di�erent servers transparent to any
particular server.

In this paper we present Algorithm PShED

(Processor Sharing with Earliest Deadlines First), a
global scheduling algorithm that provides guaranteed
service and inter-application isolation in preemptive
uniprocessor systems. Much previous research dedi-
cated to achieving these goals (see, e.g., [13, 14, 16,
6, 17, 8, 4, 1, 10]) has assumed that jobs to be han-
dled by a particular server are processed in a �rst-
come �rst-served (FCFS) manner amongst themselves.
Because few real-time applications (in particular, hard
real-time applications) satisfy such a restriction, the
guarantees that can be made by these global sched-
ulers are severely limited. The scheduling framework
we propose does not correlate the arrival time of a job
with its deadline. Service guarantees can then be made
to an application regardless of how its individual server
schedules its jobs.

System model. In this paper, we consider a system
of N applications 1; 2; : : : ; N , each with corresponding
server S1; S2; : : : ; SN . Each server Si is characterized
by a single parameter: a processor share Ui, denoting
the fraction of the total processor capacity devoted to
application i. We restrict our attention to systems in
which all servers execute on a single shared processor.
Without loss of generality, this processor is assumed
to have unit capacity, requiring that the sum of the
processor shares of all the servers be no more than one
(i.e.,

PN

i=1 Ui � 1). Algorithm PShED gives applica-
tion i the appearance that its jobs are executing on a
dedicated \virtual" processor of capacity Ui. If this
application has hard deadlines which would all be met
when scheduled on such a dedicated slower processor,
then Algorithm PShED will also guarantee to meet all
deadlines of this application, regardless of the behav-

Sanjoy Baruah
G. Lipari, J. Carpenter, and S. Baruah. A framework for achieving inter-application isolation in multiprogrammed, hard real-time environments. Proceedings of the IEEE Real-time Systems Symposium, pp 217-226, Orlando, FL. November 2000. IEEE Computer Society Press.

iors of other applications being scheduled with it.
The goal of having each application i behave as

though executing on a dedicated processor of capac-
ity Ui can be achieved trivially in a processor sharing
schedule which is obtained by partitioning the time-
line into in�nitesimally small intervals and assigning a
share Ui of the processor during each such interval to
server Si. This strategy is not useful in practice be-
cause job preemptions require execution time. While
preemptions are allowed in our model, their costs are
accounted for in such a way that Algorithm PShED

produces a valid schedule that is practical at run-time
(see Section 5).

Signi�cance of this research. The framework we
present is designed to permit several di�erent real-
time (and non real-time) applications to coexist on a
single processor, while isolating each application from
the others. Hence each application can be designed
and implemented in isolation, with no assumptions
made about the run-time behaviors of other applica-
tions that may execute concurrently with it. Our long-
term research goal is to extend this framework to per-
mit the sharing of resources other than the processor,
and to incorporate resource sharing strategies that per-
mit critical sections and nonpreemptable resources to
be shared in a transparent and guaranteed manner,
without each application having to make too many as-
sumptions about the behaviors of the other applica-
tions.

We expect such a framework to be useful in general-
purpose computing environments such as desktop ma-
chines, in which real-time (including soft and �rm real-
time) and non real-time applications coexist and con-
tend for processors and other resources. More impor-
tantly, we are interested in providing a general frame-
work for the development of real-time applications that
permits each application to be developed in isolation,
with its resource requirements completely character-
ized by a few parameters (in the research reported here,
which does not consider the sharing of resources other
than the processor, this would be a single parameter {
the processor share expected by the application). We
envision dynamic, distributed environments in which
such applications may migrate between di�erent pro-
cessing nodes at run-time for reasons of fault-tolerance,
load-balancing, and e�ciency, with simple admission
tests (in the current paper's framework, \is there su�-
cient processor capacity available to accommodate the
new application?") that determine whether an applica-
tion is permitted to execute on a particular processing
node. Note that we are not expecting each application
to be periodic or sporadic, or indeed to even execute

\forever." It is quite possible for instance, that an in-
dividual application represents a onetime transaction
that has hard real-time constraints, and that can be
modeled as a �nite number of real-time jobs. Provided
such a transaction can be shown to successfully meet
all deadlines on a dedicated processor of a particular
capacity Ui, we may model its resource requirements
in our framework by associating it with a server of
processor-share Ui. Whenever this transaction is to be
executed at run-time, this approach would require us
to �nd a processor with su�cient spare capacity to be
able to accommodate this server. Upon �nding such a
processor, a server of processor-share Ui is added to the
set of servers being served on this processor for the du-
ration of the transaction, and Algorithm PShED's per-
formance guarantee ensures that the transaction will
indeed meet its deadline.

Organization of this report. The remainder of
this report is organized as follows. Section 2 de�nes
Algorithm PShED and formally proves that the desired
properties of guaranteed service and isolation among
applications are achieved. For simplicity of argument,
Section 2 assumes AlgorithmPShED can correctly com-
pute a rigorously de�ned notion of a server's budget.
Section 3 then describes how Algorithm PShED explic-
itly computes these budgets, while Section 4 o�ers a
formal proof that these computations give the bud-
gets as de�ned in Section 2. Section 5 discusses imple-
mentation issues concerning context switch costs, and
optimizations when servers idle. Section 6 briey de-
scribes other research on providing guaranteed service
to several applications that share a processing plat-
form, while Section 7 concludes with a brief summary
of the major points we have attempted to make here.

2. Algorithm PShED: Overview

Algorithm PShED must enforce inter-application
isolation { it must not permit any application i to con-
sume more than a fraction Ui of the shared processor
if this would impact the performance of other applica-
tions. In order to do so, Algorithm PShED computes
budgets for each server: these budgets keep track of
the execution history of each server Si. To arbitrate
between the various servers to determine which server
should have access to the processor at any instant, Al-
gorithm PShED associates a server deadline Di with
each server Si. We discuss both the server budgets
and the server deadline in more detail below.

2.1 Server deadline

Algorithm PShED associates a server deadline Di

with Si. Informally speaking, the value that server Si
assigns Di at any instant is a measure of the urgency
with which Si desires the processor { the smaller the
value assigned to Di, the greater the urgency (if Si
has no active jobs awaiting execution and hence does
not desire the processor, it should set Di equal to 1).
From the perspective of Algorithm PShED, the current
value of Di is a measure of the priority that Algo-
rithm PShED accords server Si at that instant. Algo-
rithm PShED will be performing earliest deadline �rst
(EDF) scheduling among all eligible servers based on
their Di values.

Algorithm PShED holds each server Si responsible
for updating the value of Di as necessary. For instance
if Si schedules its associated application's jobs in EDF
order, then the value of Di at each instant to should
be set equal to the deadline parameter of the earliest-
deadline job of server Si that has not completed execu-
tion by time to. If there are no such jobs, then server
Si sets Di equal to 1. Since Si is scheduling its jobs
according to the EDF discipline, this would imply that
Di be updated in one of three circumstances. (i) The
job with deadline Di completes execution. (ii) A job
with an earlier deadline arrives at server Si. (iii) The
job with deadline Di has not completed, but the bud-
get computations of Algorithm PShED indicate that Si
has used up its processor share up to instant Di (we
explain below in Section 3 how this is done). Case
(iii) only occurs when there is an error within server
Si's application. What happens in this case depends
upon the semantics of this application { options include
postponing the deadline, or aborting this job. In either
case, Di should be set equal to the deadline of the new
earliest-deadline active job of Si.

Although AlgorithmPShED uses EDF, an individual
server Si may schedule its application's jobs with any
algorithm that produces reasonably consistent sched-
ules. For the purposes of this paper we require that
each server use a fully preemptive local scheduling al-
gorithm that totally orders all jobs by priority (i.e.,
for any two jobs the scheduling algorithm assigns dis-
tinct priorities, based upon the jobs' parameters { ar-
rival times, execution requirements, and deadlines),
and never executes a job of lower priority while a higher
priority job is active. Examples of appropriate al-
gorithms are EDF and any preemptive �xed priority
scheme (for the recurring task model). Examples of
algorithms we do not consider in this paper include
Least Laxity First [15] and non-preemptive schemes.
If all deadlines of Si are met while using such an al-

gorithm on a dedicated processor of capacity Ui, then
Algorithm PShED will guarantee to meet all deadlines
of Si.

No matter which scheduling discipline server Si is
using, Si should always set its Di value equal to the
earliest deadline of all ready jobs which have not com-
pleted execution. If Si's internal scheduler is not EDF,
then at some instant t0, Si may choose to schedule some
job other than the one whose deadline is the current
Di value.

Algorithm PShED must ensure that an errant server
Si which fails to update its Di parameter accurately
does not impact the performance of other servers in the
system. The performance of the errant server Si itself
might degrade however. As we will see below, this is
achieved by the server budget computations performed
by Algorithm PShED.

2.2 Server budget

At each instant to and for all values d � to that
Di has taken thus far, Algorithm PShED computes a
budget bdgti(d; to) which speci�es exactly how much
more execution server Si is to be permitted with Di

set to values � d. This value is determined by the
\tightest" constraint of the following kind

� Let ts denote a time instant � to such that the
value of Di just prior to ts is > d, and Di is as-
signed a value � d at time instant ts.

� Let �i(ts; d; to) denote the amount of execution
that Algorithm PShED has permitted server Si
with Di � d, during the interval [ts; to).

� Clearly, (Ui � (d� ts)� �i(ts; d; to)) is an upper
bound on the remaining amount of execution that
Si is permitted with Di set to values � d. If
Si were permitted to execute for more than this
amount with Di � d, then Si would be executing
for more than its permitted fraction of the proces-
sor over the interval [ts; d).

Some further de�nitions.

� Let 	i(d; to) denote the set of all time instants
� to such that the value of Di just prior to ts is
> d, and Di is assigned a value � d at time instant
ts.

� Let slacki(d; to) be de�ned as follows:

slacki(d; to)
def

= min
ts2	(d;to)

fUi � (d� ts) � �i(ts; d; to)g
(1)

0 5 10 15 20

Figure 1. The scenario described in Exam-
ple 1.

Thus slacki(d; to) is an upper bound on how much more
Si can safely execute at or after time to with deadline
� d without using more than its share of the processor.
As we move toward a formal de�nition of bdgti(d; to),
we see that it must have the property that

bdgti(d; to) � slacki(d; to): (2)

Since at any time to, Algorithm PShED will permit
server Si to contend for the processor with Di set equal
to d only if bdgti(d; to) � 0, the following lemmaclearly
holds for any de�nition of bdgti(d; to) satisfying Con-
dition 2.

Lemma 1 In systems scheduled using Algo-
rithm PShED,

(8i)(8d)(8to) slacki(d; to) � 0: (3)

By requiring that bdgti(d; to) � slacki(d; to), Algo-
rithmPShED prohibits Si from executing for more than
its fraction Ui of the shared processor, and thus isolates
the remaining applications from i. In addition to iso-
lating other applications from i, we would also like to
guarantee a certain level of performance for application
i. That is, we would like to permit Si the maximum
amount of execution possible without interfering with
the executions of other applications. Equivalently, we
would like to set bdgti(d; to) to be as large as possi-
ble, while still ensuring isolation. We may be tempted
to try setting bdgti(d; to) equal to slacki(d; to) { i.e.,
the \�" of Condition 2 could be replaced by an equal-
ity. The following example however illustrates that this
would be incorrect.

Example 1 Consider the server Si with Ui = 0:5.
Suppose that Di is initially 1 and that Si sets Di

to value 20 at time instant zero. Algorithm PShED

schedules Si over the interval [0; 6). At t = 6, Si
sets Di to 16, and is scheduled over the interval [7; 9).
From the de�nition, we see that 	i(16; 10) = f6g while
	i(20; 10) = f0g. Furthermore, �i(6; 16; 10) = 2 while
�i(0; 20; 10) = 8. Therefore, slacki(16; 10) = (12 (16 �
6) � 2) = 3, and slacki(20; 10) = (12(20 � 0) � 8) = 2.

At time instant to = 10, Algorithm PShED would com-
pute bdgti(16; 10) = 2, even though slacki(16; 10) =
1
2 � (16�6)�2 = 3. Notice that this is what one would
intuitively expect. If Si were executing on a dedicated
processor half as fast as the shared one, it could have
executed for ten time units over the interval [0; 20).
Since Algorithm PShED has permitted it to execute
for eight time units with deadlines � 20, it can execute
for just two more time units with deadline � 20, and
consequently with deadline � 16.

As Example 1 illustrates, the budget bdgti(d; to) de-
pends not just upon the amount of processor consumed
by Si with deadline set � d, but is also bounded from
above by the amount of processor consumed by Si with
deadline set > d. Thus the budget values computed by
Algorithm PShED are as follows.

bdgti(d; to)
def

= min
d0�d
fslacki(d

0; to)g (4)

Let d̂ be the smallest value > d which Di has been
assigned prior to to. Equation 5 below immediately
follows.

bdgti(d; to) = min
n
slacki(d; to); bdgti(d̂; to)

o
(5)

Consider d1; d2 with d1 < d2. While we can-
not draw conclusions regarding the relative values of
slacki(d1; to) and slacki(d2; to), the following property
immediately follows from repeated applications of Con-
dition 5.

Lemma 2 For all i and all to

d1 < d2) bdgti(d1; to) � bdgti(d2; to):

Algorithm PShED can now be described. At each
instant to, Algorithm PShED assigns the processor to
a server Si satisfying the following two conditions

1. bdgti(Di; to) > 0

2. Di = minfDj j bdgtj(Dj ; to) > 0g

That is, the processor is assigned to a server that has
the earliest server deadline of all the servers which have
a positive budget for their current server deadlines.

(We note that Algorithm PShED does not explicitly
compute bdgti(Di; to) for all i from the de�nition in
Equation 4. Rather than computing the slack, �, and 	
quantities at each instant, AlgorithmPShED maintains
data structures that allow the e�cient computation of
these quantities as needed. These data structures are
de�ned and proven appropriate in Sections 3 and 4.)

2.3 Correctness of Algorithm PShED

The hard real-time guarantee property of Algo-
rithm PShED is stated in the following theorem.

Theorem 1 . Consider a system of N servers
S1; S2; : : : ; SN with processor shares U1; U2; : : : ; UN

respectively, such that (U1 + U2 + � � � + UN) � 1. If
all jobs of Si make their deadlines when scheduled on
a dedicated slower processor of computing capacity Ui,
then all jobs of Si will make their deadlines when sched-
uled using Algorithm PShED.

Proof: We argue the contrapositive, i.e., if (a job
of) server Si misses a deadline at time instant d us-
ing Algorithm PShED, then (some job of) Si would
have missed a deadline at or prior to time instant d if
Si were scheduled on a dedicated slower processor of
computing capacity Ui. Assume that server Si misses
a deadline, and let d denote the �rst instant at which
this happens. This can happen in one of two ways. (i)
The bdgt(d; to) becomes equal to zero at some instant
t0 precisely at or prior to d, preventing Si from contend-
ing for the processor by setting its deadline equal to d.
(ii)The bdgt(d; d) > 0, in which case the job missed its
deadline at d despite Si being able to contend for the
processor with Di set equal to d.

x1. Let us consider the �rst possibility: bdgt(d; to) =
0. By Equation 4, this implies that 9d0 � d such that
slacki(d0; to) = 0. Recall (Equation 1) that

slacki(d
0; to)

def

= min
ts2	(d0 ;to)

fUi � (d
0 � ts)� �i(ts; d

0; to)g ;

and let ts denote the value of ts 2 	(d0; to) correspond-
ing to the minimumof the RHS of this expression. Over
the interval [ts; d0), server Si has already executed as
much as it would have on a slower dedicated processor
of computing capacity Ui times the computing capac-
ity of the shared processor while jobs with deadlines
� d were ready. Application i therefore must miss a
deadline during this interval on the slower processor as
well.

x2. Consider now the case where bdgt(d; d) > 0. Re-
call that d is the earliest instant at which Si misses
a deadline. Therefore at instant d, Di is set equal
to d. Recall that Algorithm PShED schedules accord-
ing to the deadline parameters Dk of the servers Sk,
k = 1; 2; : : : ; i; : : : ; n. Let t̂ < d be the last time in-
stant prior to d when the processor was either idle, or
was allocated to a server Sk with Dk > d. At that
instant, all the Dk's must have been > d (or blocked

from execution because their budget was exhausted).
Over the interval (t̂; d], the processor has been assigned
exclusively to servers with deadline � d.

For each k = 1; 2; : : : ; N , let bk denote the earliest
instant � t̂ at which Dk becomes � d. This implies
bk 2 	k(d; d), since bk is a time instant prior to d at
which Dk's value was changed from being > d to being
� d.

By Lemma 1, slackk(d; d) � 0 for each server Sk.
From the de�nition of slack (Equation 1), it follows
that

Uk � (d� bk)� �k(bk; d; d) � 0:

Equivalently �k(bk; d; d)� Uk � (d� bk), which implies
(since bk � t̂)

�k(bk; d; d) � Uk � (d� t̂) : (6)

By our choice of t̂, the processor is never idled over the
interval (t̂; d]. Therefore, �i(bi; d; d) { the amount of
execution that Algorithm PShED has permitted server
Si during the interval [bi; d) with Di � d, { is given by

�i(bi; d; d) = (d� t̂)�
NX
k=1
k 6=i

�k(bk; d; d)

� (d� t̂)�
NX
k=1
k 6=i

�
Uk � (d� t̂)

�

= (d� t̂)�

0
B@(d� t̂) �

NX
k=1
k 6=i

Uk

1
CA

= (d� t̂)

0
B@1�

NX
k=1
k 6=i

Uk

1
CA

� (d� t̂) � Ui: (7)

Since bi 2 	i(d; d), it follows from the de�nition of
slack (Equation 1) that

slacki(d; d) � Ui(d� bi) � �i(bi; d; d)

) slacki(d; d) � Ui(d� t̂) � �i(bi; d; d)

) slacki(d; d) � 0 :

By the de�nition of bdgt (Equation 4), bdgti(d; d) �
slacki(d; d) | thus, the above inequality contradicts
the assumption that bdgti(d; d) > 0.

3. Algorithm PShED: computing the bdgts

As we have seen in Section 2.2, Algorithm PShED

makes scheduling decisions based on the budgets cor-
responding to the current server deadlines. The crucial

factor determining the run-time complexity of Algo-
rithm PShED is the e�ciency with which these budgets
are computed.

Algorithm PShED maintains a residual list Ri

associated with each server Si from which budgets
bdgti(d; to) are easily and e�ciently computed. A
residual list is a set of 3-tuples (d; �;) where d and �

are nonnegative real numbers and is one of fval; bndg.
At any instant to, Ri contains a 3-tuple (d; �;) for
each value d � to that Di has been assigned thus far,
which is interpreted as follows.

� if = val then bdgti(d; to) = �;

� if = bnd then bdgti(d; to) = minf(d� to) �Ui; �g

That is, � is either the value of bdgti(d; to), or an upper
bound on this value.

Algorithm PShED maintains its list of residuals Ri

in sorted order, sorted by the �rst coordinate of each
3-tuple. For the remainder of this section, we will let

h(d1; �1; 1); (d2; �2; 2); : : : ; (d`; �`; `); : : : i

denote the sorted residual list Ri at the current time
instant, with d1 < d2 < � � � : The list of residuals Ri

is updated when jobs of Si are executed , or server Si
changes the value of its server deadline Di.

3.1 When Di’s value is changed

Suppose that server Si changes the value of its server
deadline at instant to. Let Dold

i denote the value of Di

prior to the change, and Dnew

i the value afterwards.
We assume that there is a 3-tuple (to; 0; val) in the �rst
position of Ri, and a 3-tuple (1;1; val) in the last
position of Ri. This leaves two cases.

Dnew

i already in Ri. Suppose that there is a 3-tuple
(dj = Dnew

i ; �j; j) already in Ri, at the j'th location.

If (j � val), then no change is necessary.

else (j � bnd), in which case the assignment j val
is performed and

�j minf�j; (dj � to) � Uig: (8)

Dnew
i not in Ri. Suppose that the 3-tuple (dj =

Dnew

i ; �j ; j) would occupy the j'th position in the
sorted list Ri. Then j val, and �j is computed
as follows.

If (j�1 � val), then

�j min f�j�1 + (dj � dj�1) � Ui; �j+1g (9)

else (j�1 � bnd), and

�j min f�j�1 + (dj � dj�1) � Ui; (dj � to) � Ui; �j+1g :

(10)

Stack of deadlines. Algorithm PShED maintains a
stack of deadlines SoDi with each server Si. At each in-
stant, the top of SoDi contains the current value of Di.
SoDi also contains some past values of Di in increas-
ing order. When Di changes value, SoDi is modi�ed as
follows.

if Dnew

i < Dold

i , then Dnew

i is pushed onto SoDi.

else (i.e., Dnew

i > Dold

i), values from the top of SoDi

are repeatedly popped, until the value on top of
SoDi is � Dnew

i . The �eld of the 3-tuple corre-
sponding to each popped deadline is set equal to
bnd (i.e., for each deadline d̂ popped, the 3-tuple

(d` = d̂; �`; `) is identi�ed and ` bnd). If the
value now on top of SoDi is not equal to D

new

i , the
Dnew

i is pushed onto SoDi.

The following lemma follows from the manner in
which the stack of deadlines SoDi is used by Algo-
rithm PShED.

Lemma 3 At any instant to, if there is a 3-tuple
(dj; �j ; j) in Ri such that dj < Di at to, then j �
bnd.

That is, all �j 's stored in Ri at time instant to, for
deadlines < the current server deadline, are bounds
rather than exact values. (Note that this lemma is not
asserting the converse { i.e., it is quite possible that
j � bnd even if dj > Di).

Proof of Lemma 3: If (dj; �j; j) exists in Ri at
instant t0, and dj < Di, then at some moment prior to
t0, Si must have set its Di value to be dj (otherwise
the residual (dj; �j; j) would not be in Ri). Call the
most recent such moment (where Di was set to dj)
t�1. At t�1, (dj; �j ; j) must have been on the stack
because it would have been added to the stack when
Di was assigned the value dj. Since at time t0 > t�1
we know Di > dj, then at some moment over (t�1; t0],
the value of Di was increased from being equal to dj,
to being greater than dj. At that moment, (dj; �j ; j)
would have been popped o� of the stack and j would
be set to bnd. Since t�1 was the last instant at which
Di was set to dj, the value of j in the residual has
been une�ected and thus at t0, j = bnd.

3.2 Upon execution

Recall that Algorithm PShED performs earliest-
deadline-�rst scheduling among the eligible servers,
with the server's deadline parameter Di playing the
role of its deadline. Algorithm PShED considers a
server eligible only if the server's budget associated
with its current deadline Di is not exhausted. Algo-
rithm PShED monitors the budget of each server Si
via the residual list Ri associated with server Si. More
formally, at any instant t0, each server Si will have a
residual of the form (Di; �i; val) in the residual list Ri

maintained by Algorithm PShED. Algorithm PShED

then will assign the processor to server Si only if

1. �i > 0 in the residual (Di; �i; val), and

2. for all other servers Sj either Dj � Di or �j = 0
in the residual (Dj ; �j; val).

Suppose thatDi has not changed during the interval
[to � �; to), and that Algorithm PShED has assigned
the processor to Si during this entire interval. Then
bdgti(d; to) is equal to (bdgti(d; to � �) � �) for all
d � Di, and consequently �` should be decremented
by � for all d` � Di. Additionally, Algorithm PShED

maintains Ri such that Lemma 2 is always satis�ed: if
decrementing the residual corresponding to Di causes
this residual to become smaller than the residual cor-
responding to a deadline < Di, then the residual cor-
responding to the deadline < Di is also decremented
to conform to Lemma 2 (such decrementing of a resid-
ual corresponding to a deadline dj < Di occurs when
the value of bdgti(dj; to) is equal to slacki(d

0; to) for
some d0 � Di). Thus if the residual list Ri prior to the
execution of Si for � time units is

h(d1; �1; 1); (d2; �2; 2); : : : ; (d`; �`; `); : : : i ;

then the residual list after the execution is

h(d1; �
0
1; 1); (d2; �

0
2; 2); : : : ; (d`; �

0
`; `); : : : i ;

where

�0` =

8>><
>>:

�` ��; if d` � Di

min
�
�`; �

0
`+1

�
; if d` � Di: (11)

4. Proof of correctness

Theorem 1 shows that Algorithm PShED meets its
performance guarantees, assuming that it can accu-
rately compute the budgets. To complete the proof

of correctness of Algorithm PShED,, we now show that
the method described in Section 3 accurately computes
budgets.

Theorem 2 At any instant to, the values of the
(dj; �j ; j) tuples stored in Ri satisfy the property that

bdgti(dj; to) =

�
�j ; if j = val

minf(dj � to) � Ui; �jg if j = bnd

Proof: The events of signi�cance during a run of Al-
gorithm PShED are: (i) Algorithm PShED changes its
scheduling decision { i.e., either the processor transits
from an idle state to executing some server, or it com-
pletes executing a server, and (ii) some server changes
the value of its server deadline.

The proof is by induction on the instants at which
these events of signi�cance occur, in the order in which
these events occur. If two servers change their Di's
simultaneously, they are considered serially in arbitrary
order.

Base case: Each Ri is initially empty. The �rst 3-
tuple is inserted into Ri at the instant that Di is �rst
assigned a value d <1. Say this occurs at time instant
to { the 3-tuple (d; (d� to) �Ui; val) is inserted into Ri.
By Equation 4, clearly bdgti(d; to) is exactly (d�to)�Ui.

Induction step: Our inductive hypothesis is that
each 3-tuple in Ri is \correct" at time instant ~t when
an event of signi�cance occurred { i.e., each 3-tuple in
Ri has the interpretation stated in the body of The-
orem 2. Suppose that the next event of signi�cance
occurs at time instant to > ~t.

x1: If server Si executed over the interval [~t; to = ~t+
�), then the update of Ri at time instant to is correct,
since

� For each dj � Di, �j is decremented by the
amount �, reecting the fact that the remaining
(bound on) budget corresponding to dj has been
decremented by the amount executed.

� For each dj < Di �j is decremented as neces-
sary to maintain monotonicity, in accordance with
Lemma 2.

x2: If some other server Sj executed over the inter-
val [~t; to = ~t + �), then the optimality of EDF [12, 5]
ensures that Ri remains correct at time instant to, i.e.,
Si will get to execute for �j time units prior to dj .

x3: Suppose that the event of signi�cance that oc-
curs at time instant to is that some server Si changes
the value of its server deadline from Dold

i to Dnew

i . In
that case, the value of the residual �j corresponding
to server deadline dj = Dnew

i is computed according to
one of Equations 8, 9, or 10, and j set equal to val

(thus indicating that bdgti(dj; to) is exactly equal to
the computed value of �j).

To show that this computation is correct { that
bdgti(dj ; to) is indeed exactly equal to �j as computed
{ we must show that the rhs's of Equations 8, 9, and 10
do indeed compute bdgt(dj ; to). To do so, we assume
the inductive hypothesis | i.e., that all 3-tuples stored
in Ri are indeed correct prior to this update { and then
consider each of the three equations separately, prov-
ing that the value of �j computed in each case equals
bdgti(dj ; to).

Equation 8: Since j = bnd, the value of bdgti(dj; to)
is, according to the inductive hypothesis, equal to
minf�j ; (dj � to) � Uig.

Equation 9: Since j�1 = val in this case,
bdgti(dj�1; to) = �j�1 by the inductive hypoth-
esis. By Equation 5 this implies that �j�1 =
minfslacki(dj�1; to); bdgti(dj+1; to)g. From the
de�nition of slack and the fact that Di has thus
far taken on no values between dj�1 and dj, it fol-
lows that slacki(dj; to) = slacki(dj�1; to) + (dj �
dj�1) � Ui; it therefore follows that bdgti(dj ; to) =
min(�j�1 + (dj � dj�1) � Ui; �j+1).

Equation 10: Since j�1 = bnd in this case,
bdgti(dj�1; to) = minf�j�1; (dj�1 � to) � Uig by
the inductive hypothesis. By the same argu-
ment as above, slacki(dj ; to) = slacki(dj�1; to) +
(dj � dj�1) � Ui; therefore, bdgti(dj; to) =
min(min(�j�1; (dj�1 � to) � Ui) + (dj � dj�1) �
Ui; �j+1). By algebraic simpli�cation, the rhs of
this expression reduces to min(�j�1+(dj �dj�1) �
Ui; (dj�1� to) �Ui + (dj � dj�1) �Ui; �j+1), which
equals min(�j�1+(dj�dj�1)�Ui; (dj�to)�Ui; �j+1).

Suppose Dnew

i < Dold

i . It follows from the optimal-
ity of EDF scheduling [12, 5] that if the residual (the
\�") corresponding to Dold

i was exactly equal to the
budget (i.e., the corresponding \" equals val), then
this residual remains exactly equal to the budget even
after the server deadline change. On the other hand,
if Dnew

i > Dnew

i , then it does not follow from the op-
timality of EDF that the residuals �j corresponding
to deadlines dj in Ri that lie between Dold

i and Dnew

i

which were exactly equal to bdgti(dj; ~t) prior to the
deadline change, remain exactly equal to budget guar-
antees bdgti(dj; to) at instant to. These residuals be-

0 10 20 30 40

0 10 20 30 40

(a)

(b)

Figure 2. Scenarios described in Example 2

come upper bounds on the available budgets. This
change in semantics of �j { from perhaps being an ex-
act value to being an upper bound { is recorded by
Algorithm PShED when deadlines popped o� the stack
of deadlines SoDi have their corresponding -values set
to bnd.

This is illustrated by the following example.

Example 2 Consider �rst server Si with its processor
share parameter Ui equal to 0:5. Suppose that Di is
initially1 and that Si sets Di to value 20 at time in-
stant zero. The 3-tuple (dj; �j ; j) = (20; 10; val) would
be inserted in Ri. Suppose that Si changes Di to value
40 at time instant 5, prior to getting scheduled at all by
Algorithm PShED. Algorithm PShED no longer guar-
antees Si 10 units of execution by deadline 20. For
instance, suppose that Si were to then set Di back to
20 at time instant 10. Despite the presence of the 3-
tuple (20; 10; j) in Ri, bdgti(20; 10) is certainly not 10,
but is 1

2 � (20� 10) = 5.

Consider next the same server, and suppose again
that Di is initially 1 and that Si sets Di to value
20 at time instant zero. As is the case above, the 3-
tuple (20; 10; val) is inserted in Ri. Suppose that Algo-
rithm PShED executes Si during [0; 5), at which instant
the 3-tuple is (20; 5; val). Suppose that Si changes Di

to 40 at time instant 5, and then set it back to 20 at
time instant 6. In this scenario, bdgti(20; 10) is not
1
2 � (20 � 6) = 7, rather it is bounded from above by
the value stored as the second component of the 3-
tuple (20; 5; j). In this second scenario, the value of
�j represents an upper bound on the budget of Si for
execution by deadline dj = 20.

5. Implementation issues

An idled processor. As described in Section 3, the
lists of residuals maintained by AlgorithmPShED track
of the execution history of each server. This informa-
tion is used to ensure that no one server is able to
compromise the performance of others by consuming
more than its reserved share of the processor. Under
certain well-de�ned circumstances however, it is possi-
ble to permit a server to safely consume more than its
reserved share of the processor. Suppose, for instance
that no server has any active jobs awaiting execution at
some time instant t because all jobs that arrived prior
to t have either already completed execution or missed
their deadlines. AlgorithmPShED will detect this when
all server deadlines are set to 1. It can be shown that
the future performance of all the servers is not compro-
mised if the entire history stored thus far is discarded.
Algorithm PShED can reinitialize the lists of residu-
als R1; R2; : : : ; RN

1. Similarly, Algorithm PShED can
discard any residual (d; �;), for any d greater than
the current instant. These two optimizations increase
runtime e�ciency by reducing the residual list size.

Accounting for preemption costs. The correct-
ness of Algorithm PShED implies that when a server
sets its deadline to a certain value, it is guaranteed
to receive its share of the processor by that deadline.
Once the budget associated with the current server
deadline equals zero, it must increase the value of its
server deadline to receive more processing time. A nat-
ural question to ask is: why would each server not al-
ways initially set its server deadline to be arbitrarily
close to the current instant, and always increase it by
an arbitrarily small amount when the associated bud-
get becomes equal to zero? This strategy allows it to
obtain exactly its share of the processor over arbitrarily
small intervals, and hence experience arbitrarily accu-
rate emulation of its behavior on a dedicated server2 .
To answer this question, we need to look at the issue
of job preemptions.

It has been shown [15] that if a set of jobs is sched-
uled using EDF, then the total number of context
switches due to preemptions is bounded from above
at twice the number of jobs. The standard way in

1In the terminology of feasibility analysis (see, e.g., [3]), the
equivalent of a new \busy period" can be assumed to start with
the �rst arrival of a job after instant t, and this busy period
can be analyzed independently of what occurred in earlier busy
periods.

2It is noteworthy that if such a strategy is employed, then
Algorithm PShED reduces to the standard processor sharing al-
gorithm { each server Si gets the processor for Ui � � t for time
units over each interval [t; t+ � t).

which these preemption costs are incorporated into the
schedule is by increasing the execution requirement of
each job by two context switch times, and making each
such job responsible for switching context twice { �rst,
when it preempts another job to seize control of the
processor for the �rst time, and again when it com-
pletes execution and returns control of the processor to
the job with the next highest deadline. This accounts
for all context switches in the system. In the frame-
work of Algorithm PShED, this e�ect is achieved by
\charging" each server two context switch times when-
ever the server deadline parameter is changed. Hence,
a strategy of emulating processor sharing results in ex-
cessive charges for context switches, causing the server
to waste too much of its assigned execution time with
context switch charges.

Implementing residual lists. A naive implemen-
tation of the residual list, which maintains each list Ri

as a linked list of 3-tuples, would result in a compu-
tational complexity of �(n) for each deadline-change
and execution update, where n is the number of or-
dered pairs in Ri at the time of the operation. With a
bit more e�ort, however, these operations can generally
be done in O(logn) time per operation, by storing the
residual list in the form of a balanced binary tree: in
particular, as a variant of the AVL tree [2] data struc-
ture. Space constraints prevent us from describing this
any further in this paper; however, we are currently
working on a more complete writeup containing these
implementation details.

6. Comparison to other work

A great deal of research has been conducted on
achieving guaranteed service and inter-application iso-
lation in uniprocessor multi-application environments
(see, e.g., [16, 6, 17, 1, 7, 18, 13, 8, 4, 10]). The PShED
approach di�ers from most of these approaches in one
very signi�cant manner | in all of the above research,
it has been assumed that the jobs to be serviced by each
server are processed in a �rst-come �rst-served (FCFS)
manner. (In our notation and terminology, this would
require that dji � d

j+1
i , where dji denotes the deadline

of the j'th job that arrives at server Si.) In most of
this earlier work the jobs do not have hard deadline
parameters a priori assigned, but are to be scheduled
to complete as soon as possible within the context of
its own server. Placing such a FCFS requirement on
the jobs generated by each application is a serious lim-
itation | there are indeed very few real-time applica-
tions (in particular, hard real-time applications) that
will satisfy such a restriction. The PShED framework

places no such restriction on the jobs generated by each
application; the arrival time of a job is not correlated
with its deadline.

The PShED approach builds directly upon the Band-
width Sharing Server (BSS) [11] of Lipari and Buttazzo
(see also [9]). Residual lists as a means of captur-
ing the history of servers were introduced in [11], as
ordered pairs (rather than 3-tuples, as in the current
paper) of data. The major di�erence between the re-
sults described here and the ones in [11, 9] lies in the
context | while BSS was designed to facilitate isola-
tion between cooperative servers in a processor sharing
environment, Algorithm PShED makes fewer require-
ments that the servers cooperate with each other (e.g.,
by being honest in the manner in which deadline pa-
rameters are updated, or in reporting arrival times of
jobs). Algorithm PShED extends the work in [11, 9] by
(i) placing fewer restrictions on the scheduling frame-
work, (ii) providing a precise formulation and formal
proof of the kind of hard real-time guarantee that can
be made by the scheduling framework, and (iii) adding
several optimizations to the framework design which
permit a more e�cient implementation, and provide a
\cleaner" demarcation of responsibilities between the
applications and the global scheduling algorithm.

7. Conclusions

We have proposed a global scheduling algorithm for
use in preemptive uniprocessor systems in which sev-
eral di�erent real-time applications can execute simul-
taneously such that each is assured performance guar-
antees. Each application has the illusion of executing
on a dedicated processor and is isolated fromany e�ects
of other misbehaving applications. Unlike all previous
approaches to achieving such behavior, which require
that jobs of each individual application be processed
in �rst-come �rst-served order, our algorithm permits
each server to schedule its application's jobs however it
chooses. We have formally proven that an application
which is feasible on a slower processor in isolation re-
mains feasible when scheduled together with other ap-
plications using our algorithm, regardless of whether
the other applications are \well-behaved" or not.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings of
the Real-Time Systems Symposium, pages 3{13, Madrid,
Spain, December 1998. IEEE Computer Society Press.

[2] G. M. Adelson-Velskii and E. M. Landis. An algorithm
for the organization of information. Soviet Math Doklady,
3:1259{1263, 1962.

[3] Giorgio C. Buttazzo. Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, 101 Philip Drive, Assinippi
Park Norwell, MA 02061, USA, 1997.

[4] Z. Deng and J. Liu. Scheduling real-time applications in an
Open environment. In Proceedings of the Eighteenth Real-
Time Systems Symposium, pages 308{319, San Francisco,
CA, December 1997. IEEE Computer Society Press.

[5] M. Dertouzos. Control robotics : the procedural control of
physical processors. In Proceedings of the IFIP Congress,
pages 807{813, 1974.

[6] T. M. Ghazalie and T. Baker. Aperiodic servers in a dead-
line scheduling environment. Real-Time Systems: The In-
ternational Journal of Time-Critical Computing, 9, 1995.

[7] P. Goyal, X. Guo, and H.M. Vin. A hierarchical cpu sched-
uler for multimedia operating systems. In Proceedings of
the Second Symposium on Operating Systems Design and
Implementation (OSDI'96), pages 107{122, Seattle, Wash-
ington, October 1996.

[8] H. Kaneko, J. Stankovic, S. Sen, and K. Ramamritham. In-
tegrated scheduling of multimedia and hard real-time tasks.
In Proceedings of the Real-Time Systems Symposium, pages
206{217, Washington, DC, December 1996.

[9] Giuseppe Lipari and Sanjoy Baruah. E�cient scheduling
of real-time multi-task applications in dynamic systems. In
Proceedings of the Real-Time Technology and Applications
Symposium, pages 166{175, Washington, DC, May{June
2000. IEEE Computer Society Press.

[10] Giuseppe Lipari and Sanjoy Baruah. Greedy reclaimation
of unused bandwidthin constant-bandwidth servers. In Pro-
ceedings of the EuroMicro Conference on Real-Time Sys-
tems, pages 193{200, Stockholm, Sweden, June 2000. IEEE
Computer Society Press.

[11] GiuseppeLipari andGiorgio Buttazzo. Scheduling real-time
multi-task applications in an open system. In Proceedings
of the EuroMicro Conference on Real-Time Systems, York,
UK, June 1999. IEEE Computer Society Press.

[12] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46{61, 1973.

[13] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves for multimedia operating systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, 1993.

[14] C. W. Mercer, S. Savage, and H. Tokuda. Processor ca-
pacity reserves: operating system support for multimedia
applications. In IEEE, editor, Proceedings of the Interna-
tional Conference on Multimedia Computing and Systems,
Boston, MA, USA, May 15{19, 1994, pages 90{99, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA,
1994. IEEE Computer Society Press.

[15] A. K. Mok. Fundamental Design Problems of Distributed
Systems for The Hard-Real-Time Environment. PhD the-
sis, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1983. Available as Technical Report
No. MIT/LCS/TR-297.

[16] Marco Spuri and Giorgio Buttazzo. E�cient aperiodic ser-
vice under earliest deadline scheduling. In Proceedings of
the Real-Time Systems Symposium, San Juan, Puerto Rico,
1994. IEEE Computer Society Press.

[17] Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic
tasks in dynamic priority systems. Real-Time Systems: The
International Journal of Time-Critical Computing, 10(2),
1996.

[18] I. Stoica, H. Abdel-Wahab,K. Je�ay, J. Gherke, G. Plaxton,
and S. Baruah. A proportional share resource allocation
algorithm for real-time, time-shared systems. In Proceed-
ings of the Real-Time Systems Symposium, pages 288{299,
Washington, DC, December 1996.

