A framework for hierarchical scheduling on multiprocessors: from application requirements to run-time allocation

Giuseppe Lipari, Enrico Bini

RETIS lab, Scuola Superiore Sant'Anna — Pisa

December 2, 2010

In **hierarchical scheduling**, each application is assigned a fraction of the system resources, and has its own local scheduler

Hierarchical scheduling methodologies are useful to:

- provide temporal isolation and timing guarantees in open systems,
- enable a component-based approach to schedulability analysis;
- reduce the complexity of medium to large-sized applications
- allow application-specific schedulers (also called local schedulers)

In the hierarchical scheduling model, the computational requirement of an application is described by a temporal interface

- An application consists of a set of *n* independent sporadic tasks
- Each application is executed upon an Virtual Platform

- A virtual platform is modelled by a set of virtual processors {\(\pi_1, \ldots, \pi_m\)}\)
- Virtual processors can be implemented by reservations, time partitions, etc.
- Each virtual processor is statically assigned to a physical processor
- More than one virtual processor may be allocated on the same physical processor

Problems:

- **A)** How to specify virtual platform parameters (Interface)
 - Interface specification model (periodic, bounded-delay, EDP, etc.)
 - Parameter selection

B) Run-time allocation

- admission control is executed to see if the virtual platform can be accommodated
- virtual processors are prepared starting from the interface parameters, and allocated to physical processors

We propose a framework for designing hierarchical scheduling systems that covers all phases of the design

- a novel interface model, called bounded-delay multipartition (BDM) interface
- a schedulability test for an application that can be used to derive interface parameters
- an allocation policy, called fluid bestfit

We demonstrate by experiments that, our allocation policy performs better that existing policies

Suppose we need to allocate 120% bandwidth for our application Some possibilities:

Which one is the best?

Suppose we need to allocate 120% bandwidth for our application Some possibilities:

Which one is the best?

From the application point of view, platform **A**) is better

• in most cases it is easier to schedule tasks on such a platform

Suppose we need to allocate 120% bandwidth for our application Some possibilities:

Which one is the best?

From the application point of view, platform A) is better

• in most cases it is easier to schedule tasks on such a platform

From the VP allocation point of view,

- Platform **C**) is a better candidate in most cases (smaller pieces are easier to allocate)
- The goal should be to use the least number of physical processors

We want to take advantage of this trade-off to add flexibility

1) Application schedulability. We want to demonstrate that:

We want to take advantage of this trade-off to add flexibility

1) Application schedulability. We want to demonstrate that:

If application is schedulable on C) ...

We want to take advantage of this trade-off to add flexibility

1) Application schedulability. We want to demonstrate that:

We want to take advantage of this trade-off to add flexibility

1) Application schedulability. We want to demonstrate that:

We will see that unfortunately such property does not hold for all interface models

We want to take advantage of this trade-off to add flexibility

1) Application schedulability. We want to demonstrate that:

We will see that unfortunately such property does not hold for all interface models

2) Platform instantiation and allocation. We want to derive an on-line allocation algorithm that, starting from the easier platform C), derives the "best" platform among the compliant ones

A platform interface ${\mathcal I}$ is a predicate on the values that the virtual platform parameters may have

Examples of interface specifications are:

- all platforms with an overall bandwidth of 2.5
- all platforms in which one virtual processor has a bandwidth of at least 0.8

Hence,

 an interface *I* yields naturally the set of all virtual platforms that are compliant with it, called **Π**(*I*) A platform interface ${\mathcal I}$ is a predicate on the values that the virtual platform parameters may have

Examples of interface specifications are:

- all platforms with an overall bandwidth of 2.5
- all platforms in which one virtual processor has a bandwidth of at least 0.8

Hence,

• an interface ${\cal I}$ yields naturally the set of all virtual platforms that are compliant with it, called $\Pi({\cal I})$

An interface specification model is just a template for specifying interfaces

• The model also tells us how to derive a platform that is compliant with the interface.

In the MPR model (Shin, Easwaran and Lee [1]), an interface is specified by (P, Q, m):

- All virtual processors are implemented by periodic reservations, and all have the same period ${\cal P}$
- All of them share a cumulative budget Q
- It does not matter the exact budget of a virtual processor, as long as the sum is ${\cal Q}$
- *m* is the maximum level parallelism (max number of reservations)

Example: (P = 8, Q = 8, m = 2)

In the MPR model (Shin, Easwaran and Lee [1]), an interface is specified by (P, Q, m):

- All virtual processors are implemented by periodic reservations, and all have the same period ${\cal P}$
- All of them share a cumulative budget Q
- It does not matter the exact budget of a virtual processor, as long as the sum is ${\cal Q}$
- *m* is the maximum level parallelism (max number of reservations)

Example: (P = 8, Q = 8, m = 2)

In the MPR model (Shin, Easwaran and Lee [1]), an interface is specified by (P, Q, m):

- All virtual processors are implemented by periodic reservations, and all have the same period ${\cal P}$
- All of them share a cumulative budget Q
- It does not matter the exact budget of a virtual processor, as long as the sum is ${\cal Q}$
- *m* is the maximum level parallelism (max number of reservations)

Example: (P = 8, Q = 8, m = 2)

We need to perform schedulability analysis of an application on a set of resource reservations

Parallel Supply Function (PSF) (Bini et al. [2])

- An extension of the single processor supply bound function (sbf)
- A set of functions $\{Y_k\}_{k=1}^m$,
- $Y_k(t)$ is the minimum amount of resource provided in any interval of length t by at most k virtual processors.

Given a virtual platform (set of reservations), we can compute $\{Y_k\}_{k=1}^m$

An application is schedulable on a given platform if, for every interval of length t, $k \leq m$ exists such that the application requirement in any interval of length t does not exceed $Y_k(t)$.

An application is guaranteed on an interface \mathcal{I} if it is guaranteed on all platforms that are compliant with the interface $\Pi(\mathcal{I})$

• Remember that an interface $\mathcal I$ yields a set of compliant platforms $\Pi(\mathcal I)$

We say that $\Pi^{\textit{wc}}$ is a worst-case platform of interface $\mathcal I$ when

• If an application is guaranteed on Π^{wc} , then it is guaranteed on any $\Pi(\mathcal{I})$

An application is guaranteed on an interface \mathcal{I} if it is guaranteed on all platforms that are compliant with the interface $\Pi(\mathcal{I})$

• Remember that an interface $\mathcal I$ yields a set of compliant platforms $\Pi(\mathcal I)$

We say that $\Pi^{\textit{wc}}$ is a worst-case platform of interface $\mathcal I$ when

• If an application is guaranteed on Π^{wc} , then it is guaranteed on any $\Pi(\mathcal{I})$

WARNING: the worst-case platform may not exist for a MPR interface!!

• If periods are not aligned, there is no worst-case platform Π^{wc}

- Consider platform (*Q* = 8, *P* = 8, *M* = 2)
- The graph shows $Y_2(t)$

- Consider platform
 (Q = 8, P = 8, M = 2)
- The graph shows $Y_2(t)$
- The black line is Y₂(t) for the best platform (one virtual processor with Q = P = 8)

- Consider platform
 (Q = 8, P = 8, M = 2)
- The graph shows $Y_2(t)$
- The black line is Y₂(t) for the best platform (one virtual processor with Q = P = 8)
- The blue line is $Y_2(t)$ for two virtual processors with

$$Q_1 = Q_2 = 4$$

- Consider platform
 (Q = 8, P = 8, M = 2)
- The graph shows $Y_2(t)$
- The black line is Y₂(t) for the best platform (one virtual processor with Q = P = 8)
- The blue line is $Y_2(t)$ for two virtual processors with $Q_1 = Q_2 = 4$
- The red line is $Y_2(t)$ for the case of $Q_1 = 6$ and $Q_2 = 2$

- Consider platform
 (Q = 8, P = 8, M = 2)
- The graph shows $Y_2(t)$
- The black line is Y₂(t) for the best platform (one virtual processor with Q = P = 8)
- The blue line is $Y_2(t)$ for two virtual processors with $Q_1 = Q_2 = 4$
- The red line is $Y_2(t)$ for the case of $Q_1 = 6$ and $Q_2 = 2$
- There is no worst-case platform!!

- To solve the previous issue, we use a different interface model, the Bounded Delay Multipartition (BDM) $% \left(A_{1}^{2}\right) =0$
 - An extension of the delay-bound partition model by Mok and Feng [3].

A BDM interface is characterised by a $\mathcal{I} = (m, \Delta, [\beta_1, \dots, \beta_m])$

- *m* is the maximum number of virtual processors
- Δ is the worst-case delay (i.e. the longest interval without service)
- β_k is the <u>minimum</u> cumulative service utilisation with k processors
- We impose $0 \le \beta_k \beta_{k-1} \le 1$, and $\beta_k \beta_{k-1} \ge \beta_{k+1} \beta_k$

BDM

In practice:

- We approximate all $Y_k(t)$ with linear functions, with an initial *hole* of length Δ , and then a constant slope
- β_k represents the slope of $Y_k(t)$
- Notice: Δ is constant for all k

BDM

In practice:

- We approximate all $Y_k(t)$ with linear functions, with an initial *hole* of length Δ , and then a constant slope
- β_k represents the slope of $Y_k(t)$
- Notice: Δ is constant for all k

How to derive the virtual processor parameters (Q_k, P_k) ?

• We compute the utilisation as follows:

•
$$\alpha_1 \geq \beta_1$$

•
$$\alpha_k \ge \beta_k - \sum_{i=1}^{k-1} \alpha_i$$

• Then
$$Q_k = rac{lpha_k \Delta}{2(1-lpha_k)}$$
 and $P = rac{\Delta}{2(1-lpha_k)}$

It holds:

$$\sum_{i=0}^{k} \alpha_i \ge \beta_k$$

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

	2		2		1		1		1		1			- 2	1						1					1				1	2					
	ż.		÷		. 6		A		ż.		÷.,			÷.	 ÷.,		÷.,				 ÷		Ξ.				 	. ÷.	 ÷	÷.	 ż.		э.		۰.	
	х		1		11		12		х		÷.			11	Υ.		Π.				- 2		÷.,			17		11	111	12	T.					
	٠								٠		۰.				۰.		•														٠					
			1	•••	÷.	•••	-2	• •	÷	• •	÷				 ۰.			• •	÷ •		 1		÷ .					· : ·	 3 · · ·	-2					11	• •
									٠		•				٠.		•									-		-			•					
	2.		2		. 1		л,		2.		2.		ι.,	÷,	 2.		2		ι.		 2		2.				 		 i		 2.		2.			
	٠										۰.				۰.		•														•					
									с.		ι.			- 2	а.																					
	2		2	• •	1	• •	17	• •	÷	• •	÷.			17	 21	• •		• •		1.1	 2		÷.,			12			 : · ·	11	 ÷		÷.	• • •		• •
					-		- 2		ε.		ε.			- 1	ε.															- 2						
			1		. 1				Ζ.		2.1		· · ·	- 14	 2.						 2		÷.,						 ÷							
			-		-		-		с.		ε.			- 2	э.						-					-		-		-						
					2		- 2		τ.		÷.,				τ.															- 5						
			1	• •	1	•••		•••	÷	•••	٩.			- 22	 91			• •	÷ •	1	 - 5		£ *						 ; · ·				۰.		÷.	• •
					1		1		1		÷.,				1																					
	ė,		÷		÷.,		÷		÷.		÷.,			ь÷,	 ÷.		÷.,		ι.		 4		÷.,				 	. é .	 ÷	-	 ė.		÷.,		• •	
					1		1		τ.		÷.,			- 1	÷.															- 5						
	÷		-		-		÷		÷		÷.			- 6	÷.		÷.,				-					-				-	ε.					
	11		1	• •	11	•••	12				21			12	 22	• •		• •		11	 2		÷.			11			 : • •	11				***		• •
									۰.		۰.				۰.																					
			÷.		÷.,		-0		۰.		ξ.,			- 64	64		ι.		÷ .		 х.		ι.			-0		. Ç.	5	-0						
	÷								÷.		ε.			- 6	÷.		ε.														э.					
	2				1		- 2		2		1			- 1	1		:													- 2	2					
	v		1	•••	۰.	•••	14	•••	v	•••	τ.			14	 v.	•••	τ.	•••		۰.	 ۰.		÷.,						 	14	 v	•••	Υ.		e .	• •
			-		-		-		1		ι.			- 1	τ.															- 2	1					
	ė,		÷	• •		• •	÷		÷.		٠.			÷,	 ÷.		÷.,	• •	۰.		 ÷		÷.,		• • •	-			 ÷	÷	 ė,				۰.	
	2				1		- 2		τ.		1			- 1	τ.		:									- 2				- 2	2					
															۰.																					
			1		12		17		Υ.		11	•••		17	τ.		÷.		÷.,		 2		÷.			17			:	17					27	
									٠		•				٠.		•									-					•					
			÷.	• •	÷.		÷		÷		÷				 44			• •	2.	2	 4		÷.,	3				. Ç.	 ÷	-2						• •
	٠								٠		۰.				۰.		•														٠					
	А.				а.		. 4		А.		э.			- 4	А.		ι.				- 2		ι.			14		÷.,	÷	. 4	а.				۰.	
			э.		ч.						37												82					191	877	23						
			-		-		-		х.		ε.			- 1	х.															- 2						
	÷	• • •	1	• •	- 2	• •	12		÷		11	• •		12	 11	• •	÷ -	• •		11	 1		٠.			-2	 		 211	-2	 ÷		٠.	• •	2.5	• •
					-		-		с.		ε.				э.						-							-								
L	2.		2		. 1		12		÷.,		Ξ.		:	1.1	 4.		÷.,				 2		:				 		 1	12	 ÷.,		÷.,			
					1		-7		÷		17				Υ.						3		τ.					- 17	111	- 2						
											۰.				۰.																					
		• • •	4	• •	÷2.	• •	÷		÷	• •	÷	• •		- 2	 11	• •		• •	e - 1		 ÷	•••	٠.			-2	 	· • •	 ÷ • •	-2	 ÷			• •	62	• •
			1		1		1		5		÷.,			1	÷.,						1									1						

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

• Platform 1:

•
$$\alpha_1 = \alpha_2 = 0.5, \ \Delta = 8$$

•
$$\pi_1 = (Q = 4, P = 8)$$

•
$$\pi_2 = (Q = 4, P = 8)$$

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

• Platform 1:

•
$$\alpha_1 = \alpha_2 = 0.5, \ \Delta = 8$$

•
$$\pi_1 = (Q = 4, P = 8)$$

- $\pi_2 = (Q = 4, P = 8)$
- We are only interested in the linear bound

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

Platform 1:

•
$$\alpha_1 = \alpha_2 = 0.5, \ \Delta = 8$$

•
$$\pi_1 = (Q = 4, P = 8)$$

- $\pi_2 = (Q = 4, P = 8)$
- We are only interested in the linear bound

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

Platform 1:

•
$$\alpha_1 = \alpha_2 = 0.5, \ \Delta = 8$$

•
$$\pi_1 = (Q = 4, P = 8),$$

- π₂ = (Q = 4, P = 8)
- We are only interested in the linear bound
- Platform 2:

•
$$\alpha_1 = .75, \ \alpha_2 = .25, \ \Delta = 8$$

•
$$\pi_1 = (Q = 12, Q = 16)$$

• $\pi_2 = (Q = 1.33, Q = 5.33)$

•
$$(m = 2, \Delta = 8, [\beta_1 = .5, \beta_2 = 1])$$

Platform 1:

•
$$\alpha_1 = \alpha_2 = 0.5, \ \Delta = 8$$

•
$$\pi_1 = (Q = 4, P = 8),$$

- π₂ = (Q = 4, P = 8)
- We are only interested in the linear bound
- Platform 2:

- $\pi_1 = (Q = 12, Q = 16)$
- $\pi_2 = (Q = 1.33, Q = 5.33)$
- The linear bound is the same!

• To analyse schedulability, we use the work by Bini, Baruah, Bertogna

$$\bigwedge_{i=1,\ldots,n} \bigvee_{k=1,\ldots,m} \sum_{j=1}^{k} \alpha_j (D_i - \Delta)_0 \geq kC_i + W_i$$

Where W_i is the interference of the task

β_1	β_2	α_1	α_2
0.7	1.4	0.7	0.7
0.8	1.14	0.8	0.34
0.96	0.96	0.96	0

β_1	β_2	α_1	α_2
0.7	1.4	0.7	0.7
0.8	1.14	0.8	0.34
0.96	0.96	0.96	0

β_1	β_2	α_1	α_2
0.7	1.4	0.7	0.7
0.8	1.14	0.8	0.34
0.96	0.96	0.96	0

β_1	β_2	α_1	α_2
0.7	1.4	0.7	0.7
0.8	1.14	0.8	0.34
0.96	0.96	0.96	0

β_1	β_2	α_1	α_2
0.7	1.4	0.7	0.7
0.8	1.14	0.8	0.34
0.96	0.96	0.96	0

• Example (3 tasks on two virtual processors)

• Moving right-down the application remains schedulable

- Moving right-down the application remains schedulable
- We can use this flexibility in the allocation phase

Example of allocation

- Allocate three applications, with interface: $\mathcal{I} = \{3, 2, [\beta_1 = .51, \beta_2 = 1.02, \beta_3 = 1.53]\}$
- Worst-case platform: $\forall i = 1, 2, 3$ $\alpha_i = 0.51$
- Best fit decreasing:
 - There is little choice: every virtual processor in a separate physical processor
 - To improve allocation, we have to start from a different partitioning of the bandwidth (which one?)

Example of allocation

- Allocate three applications, with interface: $\mathcal{I} = \{3, 2, [\beta_1 = .51, \beta_2 = 1.02, \beta_3 = 1.53]\}$
- Worst-case platform: $\forall i = 1, 2, 3$ $\alpha_i = 0.51$
- Best fit decreasing:
 - There is little choice: every virtual processor in a separate physical processor
 - To improve allocation, we have to start from a different partitioning of the bandwidth (which one?)
- Start from $\alpha_1 = 1, \alpha_2 = .53$
 - We obtain an allocation with **6 processors**, half of them are half-empty

Example of allocation

- Allocate three applications, with interface: $\mathcal{I} = \{3, 2, [\beta_1 = .51, \beta_2 = 1.02, \beta_3 = 1.53]\}$
- Worst-case platform: $\forall i = 1, 2, 3$ $\alpha_i = 0.51$
- Best fit decreasing:
 - There is little choice: every virtual processor in a separate physical processor
 - To improve allocation, we have to start from a different partitioning of the bandwidth (which one?)
- Start from $\alpha_1 = 1, \alpha_2 = .53$
 - We obtain an allocation with **6 processors**, half of them are half-empty
- Can we do better?

- We now propose an algorithm called Fluid Best Fit
 - starts from the "worst" platform and tries to allocate it with best-fit;
 - If it does not succeed, there is no way to allocate the interface, exit
 - If it finds an allocation: compresses the virtual processors in a fluid way so to achieve a better allocation
 - In doing so, it maintains the new platform compliant with the interface

• Start by allocating the first application (grey):

- Start by allocating the first application (grey):
 - Allocate the first VP

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure
- Third application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure
- Third application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure
- Third application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure
- Third application, same procedure

- Start by allocating the first application (grey):
 - Allocate the first VP
 - extend it until it fills the physical processor
 - Allocate the second VP, extend it until it fills the second processor
- Second application, same procedure
- Third application, same procedure
- At the end, we filled only 5 processors

We compared FBF against Best-Fit decreasing and First-Decreasing

- Light interfaces: randomly generated utilisation between $[0.2, 0.5] \cdot m$
- Heavy interfaces:randomly generated utilisation between $[0.3, 0.7] \cdot m$
- The concavity ratio is a measure of how unbalanced is the interface:
 - Concavity ratio equal to 1 implies a rigid interface with $\beta_1 = 1, \beta_2 = 2, \dots, \beta_k = k$,
 - concavity ratio equal to 0 implies all VPs with the same utilisation α_k (flexible interface)

We measured the *Compaction index*: $\frac{\# \text{ used processors}}{\min \# \text{ needed processors}}$

Results

Figure: Light interfaces

Figure: Heavy interfaces

- For flexible interfaces, FBF is almost optimal
- As the concavity ratio increases (rigid interfaces), the performance of the three algorithms becomes similar
- There is a larger difference for heavy interfaces

In this paper we presented

- BDM A new interface specification model
- How to compute interface parameters from application parameters
- FBF A flexible allocation algorithm

Future work

- Improve FBF by providing more alternative interfaces with different concavity ratio
- Consider more complex task models (interacting applications)

In this paper we presented

- BDM A new interface specification model
- How to compute interface parameters from application parameters
- FBF A flexible allocation algorithm

Future work

- Improve FBF by providing more alternative interfaces with different concavity ratio
- Consider more complex task models (interacting applications)

Questions ?

- I. Shin, A. Easwaran, and I. Lee, "Hierarchical scheduling framework for virtual clustering multiprocessors," in *Proceedings of the* 20th Euromicro Conference on Real-Time Systems, Prague, Czech Republic, Jul. 2008, pp. 181–190.
- E. Bini, M. Bertogna, and S. Baruah, "Virtual multiprocessor platforms: Specification and use," in *Proceedings of the* 30th *IEEE Real-Time Systems Symposium*, Washinghton, DC, USA, Dec. 2009, pp. 437–446.
- A. K. Mok, X. Feng, and D. Chen, "Resource partition for real-time systems," in Proceedings of the 7th IEEE Real-Time Technology and Applications Symposium, Taipei, Taiwan, May 2001, pp. 75–84.