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Abstract—Contemporary Cloud Computing infrastructures
are being challenged by an increasing demand for evolved
cloud services characterised by heterogeneous performance
requirements including real-time, data-intensive and highly
dynamic workloads. The classical way to deal with dynamicity
is to scale computing and network resources horizontally.
However, these techniques must be coupled effectively with
advanced routing and switching in a multi-path environment,
mixed with a high degree of flexibility to support dynamic
adaptation and live-migration of virtual machines (VMs). We
propose a management strategy to jointly optimise computing
and networking resources in cloud infrastructures, where
Software Defined Networking (SDN) plays a key enabling role.

Keywords-VM Placement, Data Centre Optimisation, Soft-
ware Defined Networking

I. INTRODUCTION

Information and communication technologies (ICT) are

undergoing a continuous and steep evolution. The explosive

increase in the availability of high-speed networks is causing

a significant shift towards distributed computing models

where processing and storage of data can be performed in

cloud computing data centres on an on-demand basis. More-

over, many of the emerging cloud applications have precise

requirements on performance and reliability while handling

increasingly massive amounts of data. This requires novel

techniques for dealing with advanced routing and switching

that go beyond traditional network architectures and resource

management strategies in cloud infrastructures. Indeed, it is

critical not only to employ intelligent resource allocation

mechanisms but also couple these with network architectures

that are flexible and redundant. For this purpose, it is natural

to see techniques typical of High-Performance-Computing

(HPC) environments applied to cloud data centre design.

For example, redundant network architectures designed with

a multiplicity of paths among hosts may constitute an

essential brick of a cloud infrastructure able to sustain huge

data traffic, as needed by big-data workloads or due to

instantiation and live-migration of VMs.

Unfortunately, apart from the heavily customised tech-

nologies in use within HPC data centres, common network-

ing elements and management techniques struggle when

dealing with such complex architectures, and they are com-

pletely inappropriate when it comes to flexibility, as required

to meet the dynamic requirements of server virtualisation.

However, recent developments in Software Defined Net-

working (SDN) seem to promise a radical change of the

situation for better, where technologies such as OpenFlow

seem to be the right solution to the above mentioned issues.

SDN technologies are known to lead to reduced oper-

ational costs through rapid and automated provisioning of

network services to VMs instead of the current labour-

intensive practice of manual provisioning. These benefits

are achieved by separating the data and control functions

and defining the appropriate programming interface between

them. In contrast, most of today’s routers and switches

mix both functions according to proprietary vendor designs,

making it hard to adjust network infrastructure when tens

or hundreds of virtual machines are instantiated in the data

centre. With SDN, it is possible to design logically cen-

tralised controller architectures using higher-order software

programs having a full system view. This allows different

levels of abstraction and simplicity of automation leading to

the independent evolution and development of the control

software and network hardware. There are several other

advantages in terms of evaluation and potential virtualisation

of network services, VM migration, large scale Layer 2

routing, security applications, etc. In this paper, however,

we leverage the logically centralised system view to jointly

optimise computing and networking resources to deliver high

performance in a multi-tenant data centre.

Contributions: We present a resource management ar-

chitecture for data centres based on: 1) an application model

able to capture the rich resource requirements of future data-

demanding cloud applications; 2) an optimisation model able

to optimally map these requirements onto a cloud provider

physical infrastructure, considering capacity constraints; 3)

an SDN-based approach for the automatic and seamless con-

figuration of the data centre network exploiting the output

of the optimisation procedure. The approach is validated

through the use of CloudNetSim [1], our OMNeT++-based

simulator for cloud applications.

II. RELATED WORK

Several works that address the problem of optimal allo-

cation of services in Cloud systems have appeared in recent

years [2], [3]. In [4], the authors examine this problem

in a multi-provider hybrid Cloud setting against deadline-

constrained applications. To this direction, a mixed integer

optimisation problem is formulated with the objective to

minimise the cost of outsourcing tasks from data centres

to external Clouds, while maximising the internal utilisation



of the data centres. In [5], authors address the problem of

optimal VM allocation for maximising the revenue of Cloud

providers by minimising the amount of consumed electricity.

In [6], a resource allocation problem is formulated in which

later tasks can reuse resources released by earlier tasks,

and an approximation algorithm that can yield close to

optimum solutions in polynomial time is presented. In [7],

the same authors propose an allocation problem for vTelco

applications, where arbitrary latency expressions are used to

model the end-to-end latency requirements of services.

Another work focusing on placement of Telco services

can be found in [8], where trade-offs between centralised

versus distributed cloud architectures are investigated. In [9],

the problem of optimal placement of VMs in distributed

clouds for minimising latency is tackled. Complexity is

reduced by recurring to a hierarchical split of the placement

problem into the two reduced-complexity sub-problems of

choosing the data centres in which to place, then choosing

the specific racks and servers, and applying a partitioning of

the application graph to be placed. In [10], a comparison is

made of various algorithms for placing VMs in centralised

vs distributed clouds, analysing also the impact on latency

for accessing the placed services.

A probabilistic aspect to the allocation of distributed

services can also be found in [11]. In prior work of ours [12],

the problem of optimum allocation of real-time work-flows

with probabilistic deadline guarantees was tackled. In that

work, the main focus was on the probabilistic framework

allowing the provider to overbook resources in the various

time frames of each advance reservation request, knowing

the probabilities of actual usage/activation of those services

by the users. Also, in a more recent work [13], a probabilis-

tic framework was used to model optimum allocation of

horizontally scalable cloud services. Differently from these

works, where modelling of the network is quite simplistic,

in the present paper a complex data centre network topology

with possibly multiple paths across hosts is considered, to

the purpose of dealing with applications requiring significant

amounts of data to transfer.

A way to estimate the probability that an end-to-end

deadline is respected for a given composition of services

is the one to build probabilistic models for the performance

achieved by a composition of distributed services. For ex-

ample, in [14] authors investigated on mathematical models

to compute the probability density function of the response-

time of service compositions under various compositional

patterns. Also, in [15] authors modelled probabilistic in-

teractions among multiple components of multi-tier cloud

applications recurring to Markov Chains. However, in the

present paper we focus on variability of the workload for

services whose composition is deterministically fixed.

The use of SDN to facilitate the joint optimisation of

VM allocation and selection of network paths, has been

mentioned in [16]. The authors focus on a multi-path enabled

data centre where traffic engineering techniques can be

leveraged to route individual VM traffic. Still, there is

no description nor analysis of the used SDN technology

and how this optimisation is integrated with the network

controller. To fill this gap, our work analyses different SDN

technologies and network controllers that support efficient

placement and routing of virtualised applications in a multi-

tenant environment.

The major cause of the gap just mentioned is the state

of maturity within the industry. These are the early days

of SDN: less than 1% of all data centre systems are

SDN-enabled. Currently, OpenFlow is the de-facto standard

and new standards can be expected to emerge as indus-

try matures. For example, the Extensible Messaging and

Presence Protocol (XMPP), originally developed for instant

messaging and online presence detection, has been proposed

as an alternative to OpenFlow. Also, current standards for

the data path, such as Virtual eXtensible LAN (VXLAN)

[17] or similarly MPLS over GRE, are usable "as-is", by

“stretching” a Layer 2 network over a Layer 3 network and

extending the number of isolated broadcast domains.

OpenFlow evolution inside the data centre (intra data

centre SDN) is witnessed by several controller implementa-

tions available not only from industry, but also in the open-

source world, such as POX, Beacon, Floodlight, FlowER,

OpenDaylight and other new concepts and network abstrac-

tions such as Flowvisor [18] and HyperFlow [19] that allow

researchers to develop isolated flow allocation strategies for

multi-tenant large scale data centres. This rich set of tools

simplifies significantly the integration of the optimisation

solution proposed in this paper.

III. PROPOSED APPROACH

Figure 1: Overarching view of our proposed approach.

Our proposed architecture is visually depicted in Figure 1.

At the heart of the system is an Optimisation Logic block

responsible for deciding how to optimally accept and deploy

applications on behalf of customers. Requests to deploy ap-

plications are specified in terms of a rich application model,

constituted by a topology of inter-connected components

with associated computing and networking requirements

(the concept is largely inspired our prior work around the



ISONI Virtual Service Network specification developed in

the IRMOS project [20]). The optimiser takes into account

knowledge of the underlying physical topology, along with

its foreseen status given the time-frame of the request to

be accepted, and outputs placement decisions and routing

tables that are used to automatically configure the underlying

infrastructure.

A. Application Models

In our architecture we consider applications specified as

generic graphs (or logical topologies), to be mapped onto

the graph of the underlying physical infrastructure known

to the cloud provider.

Typical application types that fall within the generic class

of such DAG-like application models include, for example,

interactive on-line multimedia applications and multi-tier

web-based services. Typical the user interacts directly with

a UI component handling details such as authentication and

presentation logic. Users requests are usually forwarded to-

wards additional components realising the core functionality,

e.g., in a multi-tier web-based system, it is common to

see, in addition to the web-server, an application server

and a database back-end. These situations are to some

extent modelled as simple linear work-flows where each tier

needs certain computing and network bandwidth require-

ments. In case of compute-intensive operations, such as 3D

rendering, physics simulations or sophisticated multimedia

computations, it is common to distribute the work of one

or more such components across multiple VMs to speed-

up operations. This results generically into split-points and

join-points within the application graph, thus the mentioned

model is still able to capture this kind of scenarios, which are

increasingly common and interesting in cloud environments

due to the horizontal scalability capabilities of current IaaS

platforms.

The application model may be associated with an end-

to-end latency constraint (not shown here for the sake of

brevity), as described in our prior works [12], [21].

B. Optimisation Logic

The physical resources of a cloud provider are generally

considered as an interconnection of (potentially hetero-

geneous) networks that interconnect (potentially heteroge-

neous) computing nodes, in a redundant and multi-path

environment. For example, various hosts in a rack are inter-

connected through 1 GB/s links to a top-of-rack switch,

which is inter-connected through 10 GB/s links to one or

more higher-layer switches, in a reconfigurable network

architecture which generally is capable of delivering packets

among hosts through a few alternate paths. Formally, the

network topology is characterised by the following elements.

• A set of NH physical computing nodes, or hosts: H =
{1, . . . , NH} . Each host h ∈ H is characterised by

– a maximum available/residual computing capacity

Uh ∈ R
+, which expresses the value of a given

system-wide reference performance metrics;

– a maximum available/residual storage capacity

Mh ∈ N, expressed in bytes.

• A set of interconnection switches S .

• The overall set of interconnected (either computing or

network) elements is denoted by E , H ∪ S .

• A set of physical links: L ⊂ E × E . Each link l =
(j1, j2) ∈ L is characterised by the maximum/residual

bandwidth Wj1, j2 ∈ R
+, expressed in bytes/s.

• For each hosts pair (h1, h2) ∈ H × H, a set Ph1, h2

of interconnection paths may be available and usable,

where each path p ∈ Ph1, h2
is associated with the

sequence Ph1, h2, p of its Lh1, h2, p links: Ph1, h2, p =

{(ah1, h2, p, 1, bh1, h2, p, 1), . . . , (ah1, h2, p, Lh1, h2, p
,

bh1, h2, p, Lh1, h2, p
)} ⊂ L.

The following notation is used to denote applications:

• Set of NA applications: A = {1, . . . , NA} .
• Each application a ∈ A is constituted by a topol-

ogy of m(a) software components (encapsulated in-

side VMs): A(a) ,
{

1, . . . ,m(a)
}

, denoted also as
(

ξ
(a)
1 , . . . , ξ

(a)

m(a)

)

;

– each component ξ
(a)
i has a computing workload

of C
(a)
i , expressed in some reference performance

metrics;

– the topology is specified in terms of m
(a)
L virtual

links L(a) ⊂ A(a) ×A(a);
– each virtual link l = (i1, i2) ∈ L(a) is associated

with the networking requirements b
(a)
i1, i2

needed

by A(a) for handling the communications between

ξ
(a)
i1

and ξ
(a)
i2

, expressed in bytes/s.

• In each application topology, a special component is

included representing the router r ∈ E of the data

centre; then, the topology will include, within the

virtual links L(a), a virtual link between each other

application component that needs to interact with the

outside world and the router.

Now we can introduce the unknown allocation variables (the

relationships among them is going to be clarified shortly):

• Booleans x(a) encoding whether or not application A(a)

is accepted by the provider for deployment within its

infrastructure.

• Booleans x
(a)
i, h encoding whether or not component ξ

(a)
i

of application A(a) is deployed on physical host h ∈ H.

• Derivative Booleans x
(a)
i1, i2, j1, j2

defined as the logical

AND between x
(a)
i1, j1

and x
(a)
i2, j2

.

• Booleans zi1, i2, j1, j2, p encoding whether or not ξ
(a)
i1

and ξ
(a)
i2

are placed respectively on j1 ∈ H and

j2 ∈ H and the path p ∈ Pj1, j2 available between said

physical hosts is chosen for communications between



said application components. These variables allow for

properly configuring the switches in the network if the

application is accepted.

• Deviate Booleans y
(a)
i1, i2, j1, j2

encoding whether or not

the communications among ξ
(a)
i1

and ξ
(a)
i2

will insist on

the physical link connecting (j1, j2) ∈ L.

For a given a ∈ A, each component i ∈ A(a) is to be placed

on one physical host if the application is accepted (x(a) = 1),

or none of them if it is rejected. This constraint is expressed

as: ∀h ∈ H,
∑

j∈H x
(a)
i, h = x(a) ∀a ∈ A, ∀i ∈ A(a).

For a given a ∈ A, i1, i2 ∈ A(a), j1, j2 ∈ H,

the logical AND constraint among variables x
(a)
i1, i2, j1, j2

,

x
(a)
i1, j1

and x
(a)
i2, j2

can be expressed as linear constraints

(omitted). Also, the z
(a)
i1, i2, j1, j2, p

variables are clearly re-

lated to the x
(a)
i1, i2, j1, j2

as only one path needs to be

chosen for each communication between ξ
(a)
i1

and ξ
(a)
i2

.

This is expressed as: ∀a ∈ A, ∀i1, i2 ∈ A(a), ∀j1, j2 ∈

H,
∑

p∈Pj1, j2
z
(a)
i1, i2, j1, j2, p

= x
(a)
i1, i2, j1, j2

.

Furthermore, relationship among y and z variables can

be made explicit as: ∀a ∈ A∀i1, i2 ∈ A(a) ∀ (j1, j2) ∈

L :
∑

h1, h2∈H, p∈Ph1, h2
|(j1, j2)∈Ph1, h2, p

z
(a)
i1, i2, h1, h2, p

=

y
(a)
i1, i2, j1, j2

.

Now we can formulate the problem as a Boolean Lin-

ear Programming (BLP) optimisation problem. The overall

computing workload accepted onto each host, as well as the

overall network workload admitted onto each physical link,

must respect their respective maximum capacity values:

∑

a∈A

∑

i∈A(a)

C
(a)
i x

(a)
i, h

≤ Uh ∀h ∈ H (1)

∑

a∈A

∑

i1, i2∈A(a)

b
(a)
i1, i2

y
(a)
i1, i2, j1, j2

≤ Wj1, j2 ∀ (j1, j2) ∈ L(2)

Objective function: Among possible objectives of the

optimisation carried out by the cloud provider, we have

to introduce a suitable function to maximise. Normally,

we want to maximise the overall gain of the provider, as

coming from individual gain values G(a) associated to each

application a ∈ A. Also, we may want to maximise the

saturation level of used resources, thus minimise the overall

cost due to the use of new resources in the provider premises;

therefore, for each new resource h ∈ H(new) ⊂ H or

(j1, j2) ∈ L(new) ⊂ L that is not occupied yet in the data

centre, the provider will incur a cost of Kh and Kj1, j2 . For

example, the provider might turn off parts of the data centre

that are not immediately used, saving on the energy bill.

Alternatively, we may want to maximise the performance

experienced by customer applications, namely to minimise

the maximum saturation level among resources throughout

the data centre; this implies minimising the extent to which

physical resources are shared among different customers and

VMs, reducing temporal interference.

The policy maximising gain while minimising cost of

occupying new resources may be formalised as follows:

max
∑

a∈A

G(a)x(a)−
∑

h∈H(new)

Kh nh−
∑

(j1, j2)∈L(new)

Kj1, j2 nj1, j2

(3)

where nh, h ∈ H(new) are new derivative Boolean variables

easily defined as logical OR of the
{

x
(a)
i, h

}

variables

∑

a∈A

∑

i∈A(a)

x
(a)
i, h ≥ nh (4)

∑

a∈A

∑

i∈A(a)

x
(a)
i, h ≤

∑

a∈A

m(a) nh, (5)

and nj1, j2 , (j1, j2) ∈ L(new) are new derivative Boolean

variables defined as logical OR of the
{

y
(a)
i1, i2, j1, j2

}

vari-

ables
∑

a∈A

∑

(i1, i2)∈A(a)

y
(a)
i, j1, j2

≥ nj1, j2 (6)

∑

a∈A

∑

i1, i2∈A(a)

y
(a)
i1, i2, j1, j2

≤
∑

a∈A

(

m(a)
)2

nj1, j2 (7)

Remarks: In this section, we presented a formalisation

of the problem of optimal resource management in a cloud

infrastructure, as a standard Integer Linear Programming

(ILP) optimisation program. This can be solved in various

ways, including recurring to standard solvers, as done for the

experiments shown later in this paper, or writing custom and

heuristic solvers, to conveniently speed-up computations.

The output of the above problem is constituted by:

1) the variables x(a) which, for each a ∈ A, tell us

whether to accept the application or not;

2) the variables x
(a)
h which, for each a ∈ A and h ∈

H, tell us whether component ξ
(a)
i of A(a) is to be

deployed on host h or not;

3) the variables ya, i1, i2, j1, j2 which, for each a ∈ A,

i1, i2 ∈ A(a) and (j1, j2) ∈ L, tell us whether traffic

among ξ
(a)
i1

and ξ
(a)
i2

traverses link (j1, j2), allowing

us to properly configure the forwarding tables in the

network, when SDN technologies are used.

We introduced two possible optimisation functions in

said formulation, one to minimise costs incurred by the

provider and the other one to minimise temporal interference

among hosted applications. We will see, through a set

of simulations, how these different policies impact on the

overall performance as measured by applications.

C. SDN controller

A SDN controller enables network operators to program-

matically modify network flows independently from physical

network devices. In order to design our controller, we have

considered a number of mandatory requirements for data



centres hosting current and future cloud services: 1) End-

hosts should be able to communicate efficiently with each

other in the data centre using some of the -potentially-

multiple communication paths. 2) Logic forwarding loops

between pairs of hosts must be avoided 3) The controller

must provide network support for any VM to migrate to

any host without changing their IP addresses (this avoids

breaking pre-existing TCP connections and session state).

4) The controller receives connectivity information from the

optimisation logic (section III-B), translates this information

into consistent forwarding rules and distribute them among

the data centre switches). 5) A coherent logical view of the

topology is mandatory for the proper management of the

network. Therefore, the controller must periodically monitor

the network and update the optimisation logic in case of any

topological change (e.g., link failure).

As mentioned in section II, there are many technologies

that can provide SDN functionality at some extent. How-

ever, we have designed our controller based on OpenFlow

because there is a limitation in the other technologies using

existing layer 2/layer 3 standards to provide "as-is" SDN

solutions. That is, existing layer 2 and layer 3 network

protocols face some combination of limitations in current

data centres designs: Current IP networks require massive

effort to configure and manage. Ethernet is vastly simpler

to manage, but it lacks scalability as it relies on network-

wide flooding to locate end hosts resulting in large state

requirements and control message overhead that grows with

the size of the network. Additionally, Ethernet forces paths to

comprise a spanning tree thus avoiding any path redundancy

and leading to poor utilisation of links in current multi-path

data centre networks.

The OpenFlow protocol can combine the scalability of

IP and the simplicity of Ethernet making it possible to

build a system that maintains the same configuration-free

properties as Ethernet, yet scales to large networks. This

is possible because OpenFlow breaks the inflexible TCP/IP

protocol stack allowing network switches to forward packets

according to the information (headers) of different layers.

This vertical movement in the protocol stack enables a richer

set of forwarding rules that make it possible to identify any

flow and allocate it anywhere in the network.

Specifically, our controller has been designed using a

modular approach that allows a composition of functions that

interact with the optimisation logic. We enhanced existing

modules in the POX controller framework.1 to implement

the following functionality:

1) The Host tracker function monitors the location, MAC

and IP addresses of hosts in the network. 2) Switches

connectivity is monitored by the Topology discovery mod-

ule using LLDP packets. 3) The ARP responder module

replies to ARP queries using information received from the

1More information at: http://www.noxrepo.org/pox/documentation/

optimisation logic to avoid ARP broadcasts that can harm

communication performance.

The information gathered by the Host tracker and Topology

discovery modules is sent to the optimisation logic optimis-

ing virtual machines and network flows allocation. The SDN

controller receives the configuration of flows in the network

and creates the matching rules via the Rule Creation module.

Finally, the resulting forwarding rules are sent to the data

plane implementing the optimal configuration.

IV. EVALUATION

We prototyped our design within CloudNetSim [1] and

OMNeT++ [22], a mature, open-source simulation frame-

work widely used—especially in networking research. OM-

NeT++ is a versatile framework that allows for a modular

model design, while it also provides a simulation kernel and

a handy API for modelling parallelisation. We leveraged pre-

existing models, specifically by adapting the baseline models

provided by the INET framework2 to simulate servers and

OpenFlow-compliant switches. However, as OMNeT++ is

mainly geared at network simulations, we developed our

own models for simulating CPU scheduling [1] and specifi-

cally hierarchical scheduling of VMs and applications within

VMs, as needed in investigations on multi-tenant cloud

environments under aggressive server consolidation policies.

Application Models: We developed a simple applica-

tion model simulating a linear work-flow of VMs. User

requests are triggered at a pre-fixed period, and they traverse

in sequence the whole chain, needing a prefixed amount of

processing time on each VM, then they are handed over

to the next VM by sending a UDP message of a pre-fixed

size. In the simulations performed for this paper, we used

two-stages work-flows only, where we measured the round-

trip times as measured by the client between sending each

request and receiving the corresponding reply.

Network Topology: We ran a few exemplifying exper-

iments simulating a small data centre with 8 available hosts

distributed within 2 pods (see Figure 2), each including two

ToR switches and two aggregation switches connected in a

fat-tree-like structure, and a final core switch connecting the

aggregation switches of both pods.

Figure 2: Sample data centre used for simulations.

This arrangement of is typical of data centre architectures

for HPC, and is a classical, cheap and scalable way of deal-

2More information at: http://inet.omnetpp.org/.



ing with data-intensive applications whose (aggregate) traffic

would not fit within a traditional tree-only architecture.

A. System Controller

In our experimentation, the optimisation logic described

above has been prototyped by using an exact formulation of

the placement problem as a BLP optimisation program. This

has been automatically generated and submitted to the GNU

Linear Programming Toolkit (GLPK) solver. The obtained

solution was automatically transformed into VM deployment

decisions and switches forwarding table configurations.

The latter configurations, within our CloudNetSim OM-

NeT++ based simulation environment, amounted to gener-

ating automatically two configuration files (an .xml and

an .ini file) that are used to automatically populate the

OMNeT++ topology representing the system, along with

all the needed parameters. Among these files, we generate

automatically models representing multiple VMs deployed

on the same server and CPU, when needed. We also generate

automatically the routing tables needed by the switches

for dealing properly with the traffic, as needed by our

optimisation framework. Actually, we could only use a

partial implementation of the per-flow routing as enabled

principally by SDN, however, a full implementation of the

overall approach, including the simulation of an OpenFlow

compliant SDN controller, is under way.

B. Simulation Results

Through our simulation framework, we analysed the im-

pact of the two optimisation objectives introduced above

on the deployed applications performance. To this purpose,

we deployed a variable number of dual-VM applications

between 21 and 34, with randomly generated computing

times and needed forward and backward message sizes. In

order to present a compact representation of the obtained

response-times, we use the obtained cumulative distribution

function (CDF) of the overall set of response-times as

gathered during 4 seconds of simulated time.

Figure 3.(a) compares the obtained CDFs when configur-

ing the optimiser with the 2 different optimisation objectives

described above: minimise cost of new occupied elements

(red curve) vs minimise maximum elements saturation level

(green curve). As it is expectable, the former policy pushes

towards overly aggressive consolidation levels (both on

networking and on computing resources), resulting in higher

response-times. As the figure highlights, it is noteworthy

that the worst-case response-times (nearly (2.5s) are greatly

worse than the ones achieved by the latter policy (nearly

300ms). Indeed, this last policy tends to spread the work-

load across the available resources, minimising the level of

sharing, resulting in higher responsiveness of the deployed

applications.

Figure 3.(b) reports the CDFs obtained in a scenario with a

lighter overall load, when the objective function minimising
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Figure 3: CDFs of the obtained response times, for the 2

different optimisation objectives (a) and with varying

saturation thresholds (b).

cost of occupied resources was used, with different maxi-

mum saturation thresholds. In this case the load imposed on

the data centre was not as high as in the case of Figure 3.(a).

Still, it can be noticed that, as the saturation threshold

allowed for the resources approaches 1.0, the worst-case

response-times of the deployed applications tend to increase.

The difference in behaviour of the two optimisation poli-

cies may also be highlighted by observing some statistics on

the data centre overall saturation levels. Figure 4.(a) reports

the maximum saturation level of computing resources versus

the number of occupied hosts as new applications are pro-

gressively accepted and deployed. As it can be seen, when

minimising cost of new resources (red curve), the workload

is initially kept very packed on a few hosts, then only

when strictly needed, new hosts are progressively occupied.

When minimising the maximum saturation (green curve),

instead, applications are progressively deployed spreading

across all available resources, and only when all of them

are already loaded, does the policy start to re-deploy on

the same resources, increasing progressively the maximum

saturation level.

Figure 4.(b) is similar, but it reports the average saturation

of only occupied hosts on the Y axis. In this case, the red

curve goes up and down because the workload first fills a

few hosts, then a new completely unloaded host is occupied,

causing the average saturation of occupied hosts to drop,

then fill again with more applications, until a new host is

needed again, and so on.

Finally, focusing on the policy minimising the cost of new

resources, we use a similar set of plots to compare what

happens with the three maximum saturation levels of 0.8,
0.9 and 1.0. Figure 5 reports the obtained statistics.
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Figure 4: Obtained max saturation (a) and average

saturation of occupied hosts (b) vs the number of occupied

hosts as new applications are progressively accepted –

comparison between the two considered objective

functions.
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Figure 5: Obtained max (a) and average (b) saturation of

occupied hosts vs number of occupied hosts.

C. Solving Time

We applied the optimum GLPK-based solver to a number

of scenarios obtained varying the number of pods and hosts

per pod composing the topology. We measured the solving

times obtained for these configurations using GLPK v4.45

running on an Intel(R) Core(TM)2 Duo CPU P9600 @

2.66GHz (the solver does not take advantage of multiple

CPUs, so only 1 CPU was used by GLPK).

Results are reported in Figure 6, where the X axis reports

the overall number of hosts for the configuration, and the

Y axis reports the solving time. The latter increases more

than exponentially with the number of overall hosts in the

physical topology (note the logarithmic scale on the Y axis).

Therefore, the optimum solver can only be used with a small

number of elements composing the physical topology.
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Figure 6: Solving time needed in a few sample scenarios

However, it is possible to apply a hierarchical decomposi-

tion of the optimisation problem, invoking a first instance of

the solver figuring out which Pods to place the applications

onto, then a second instance taking care of detailed place-

ment within each Pod. For example, placement on 16 hosts

spread across two pods can be dealt with:

• by applying the optimum solver for 2 pods and 16

overall hosts, taking up to 1 million ms (nearly 15

minutes) of solving time, as shown in Figure 6;

• by applying the optimum solver to a reduced prob-

lem placing onto two logical computing elements (the

pods), taking nearly 20ms, then applying the solver

again to the problem of placing within each pod the

allocated components, across 8 hosts only, taking nearly

200ms; thus we would get a solution in nearly 220ms.

We defer an extensive evaluation of the effectiveness of

hierarchical decomposition for large systems as future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our design for optimum

management of resources within cloud data centres, focusing

on applications requiring massive data transfers and tight

timing constraints. Our approach is based on an Optimisation

Logic component, relying on knowledge of resource require-

ments of applications and status of the underlying physical

resources. Then, an automatic SDN-based configuration of

the network is leveraged to deal with redundant network

architectures, allowing for per-VM and per-flow placement

and routing of application workloads. A preliminary eval-

uation by simulation of our optimisation logic has been

presented, highlighting the impact of its objective function

on the achieved response-time of placed applications. Also,

we reported a set of measurements on the solving time

needed by the GLPK solver to provide an optimum solution,

and we provided hints as to how to speed-up the solving

process by hierarchical decomposition.

We plan to extend the described work in several direc-

tions. First, a prototype of the presented overall design is



planned to be developed by modifying the OpenStack open-

source framework. Second, we plan to tackle the optimi-

sation problem as formalised in this paper by recurring to

heuristics (e.g., along the lines of our prior work in [23])

that are faster and more scalable than an optimum general-

purpose ILP solver, which thus may be more appropriate

for dealing with dynamic scenarios in which placement

decisions have to be taken dynamically. Third, the presented

optimisation framework is being extended along various

probabilistic paths, including considering applications with

horizontal scalability requirements, along the lines of rea-

soning behind our prior research as appeared in [12], [13].
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