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Abstract—This paper presents a technique for admission control of a
set of horizontally scalable services, and their optimal placement, into
a federated Cloud environment. In the proposed model, the focus is on
hosting elastic services whose resource requirements may dynamically
grow and shrink, depending on the dynamically varying number of users
and patterns of requests. The request may also be partially accommo-
dated in federated external providers, if needed or more convenient.
In finding the optimum allocation, the presented mechanism uses a
probabilistic optimization model, which takes into account eco-efficiency
and cost, as well as affinity and anti-affinity rules possibly in place for
the components that comprise the services. In addition to modelling and
solving the exact optimization problem, we also introduce a heuristic
solver that exhibits a reduced complexity and solving time. We show
evaluation results for the proposed technique under various scenarios.

Index Terms—Admission control, elasticity, cloud computing, optimum
resource allocation, cloud federation

1 INTRODUCTION

NOWADAYS, more and more distributed applications
and services are being provided in the Cloud as a

composition of components. For example, a web-based
application typically includes three main components
(a.k.a., tiers): a web server, an application server and a
database back-end. Each component is deployed as a
set of virtualized servers, i.e., Virtual Machines (VMs),
referred to in the following also as component replicas,
that are activated each time a request arrives from the
end users, where a load-balancing logic usually ensures
that the workload is spread as evenly as possible across
the VMs of a component (see Figure 1).

The use of virtualization techniques allows for the
seamless allocation and relocation of service components
inside the Cloud. It also makes it easier to perform the
process of horizontal elasticity, i.e., adding/removing ex-
tra VMs for each component during runtime to maintain
a certain level of performance for the overall service
when there are variations in the workload. For example,
in a web-based service as mentioned above, each tier
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Figure 1. A sample service composed of multiple hori-
zontally scalable components, each of them deployed as
a set of Virtual Machines (VMs).

Figure 2. Placement of a distributed cloud service onto a
Cloud Provider with federation agreements.

may be designed to be horizontally scalable to meet the
computing requirements imposed by large and variable
workloads. Furthermore, the potential use of federation
agreements among Cloud providers allows for accepting
a service with the possibility to hand it over (entirely
or partially) to a federated provider (see Figure 2). This
pushes forward the idealistic view of infinitely available
resources for a Cloud Provider (CP).

In this context, a challenging problem is the one of
how to properly design an intelligent resource manage-
ment logic, that considers the multi-faceted aspects of
the VM placement process, including possible quality of
service (QoS) requirements to be met, uncertainty and
variability in workload demand, and CP own business
objectives. At admission control time, and in order to
provide strong performance guarantees, the CP must
consider not only the basic resource requirements but
also the extra ones that may be needed to be added at
runtime, defined as elastic requirements. In many cases,
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these may be quite large compared to the basic require-
ments. For example, given a service with a high expected
variability in the number of users, the number of VMs
that may be needed may significantly vary over time to
meet the agreed quality of service (QoS) level. Therefore,
the elastic requirements play a significant role in the
cost for hosting the service. Still, with a probabilistic
knowledge of the workload variability and flexible SLA
models allowing for probabilistic guarantees, the CP and
its clients may achieve an agreement that satisfies both
parties to a sufficient extent. Also, when allocating a
set of services within the infrastructure, a CP needs to
optimize on proper metrics that express the goodness of
the found allocation. Clearly, from the CP’s perspective,
such metrics are significant for the cost of each allocation
solution. However, apart from the cost, nowadays a CP’s
business policy may include other factors such as how
eco-efficient a given host is as compared to others [1].

Additionally to federated Clouds, the problem ad-
dressed in this paper is also relevant in the context
of hybrid Clouds. An example from the telecommu-
nications industry is the one of a network operator
willing to deploy within its private cloud a virtualized
network function [2], such as an IMS (IP Multimedia
Subsystem) Core, which is composed of various compo-
nents, e.g., Proxy, Interrogating and Serving Call Session
Control Function (P-CSCF, I-CSCF, S-CSCF), and Home
Subscribers Server (HSS). Said virtualized components
are designed to be horizontally scalable to cope with
variability in the number of subscribers, as well as in the
workload imposed by a set of subscribers. The network
operator might be willing to deploy a subset of the
functions onto external Clouds to cope with particularly
high peaks of demand that cannot be hosted internally.

In this paper, we tackle the problem of optimum
allocation of distributed services in a federated cloud
environment focusing on elastic workload requirements
and incorporating a probabilistic approach in terms of
availability guarantees. The resulting model constitutes
a probabilistic admission control test that strives to
optimize the allocation of the services within a CP (own
or federated) infrastructure by considering its business
level objectives (e.g., eco-efficiency and cost), while also
sustaining a given QoS level for the clients and adhering
to any affinity or anti-affinity constraints imposed on
the services. The relative significance of optimization
objectives can be regulated by the CP, and the proposed
model can be easily extented to cover more objectives.

The output of the optimization problem includes the
allocation pattern, i.e., the selected hosts and subnets
for hosting the services, and the maximum amount of
computational, networking and storage capacity that is
allocated to each service component, either locally or in
any of the federated Clouds. A heuristic solver is pro-
posed for the presented problem that exhibits reduced
computation times, when compared to an optimum
solver (e.g., from tens or hundreds of seconds down to
tens or hundreds of milliseconds, for the configurations

shown in Section 6.1). This allows for applying the solver
at run-time to scale up and down the allocated resources
according to the demand, if needed.

This paper is organized as follows. Section 2 gives an
overview of the related work, followed by the descrip-
tion of the problem under study in Section 3. This is
formalized as a probabilistic admission control problem
in Section 4, whereas Section 5 presents an approxi-
mate heuristic solver that yields high quality results
at much higher speeds than those of an exact solver,
as demonstrated in Section 6. An indicative case study
that validates the proposed approach is presented in
Section 7. Finally, conclusions are drawn in Section 8.

2 RELATED WORK

Several works that address the problem of optimal allo-
cation of services in Cloud systems have appeared in re-
cent years. Van den Bossche et al. [3], examine this prob-
lem in a multi-provider hybrid Cloud setting against
deadline-constrained applications. A mixed integer op-
timization problem is formulated with the objective to
minimize the cost of outsourcing tasks from data centers
to external Clouds, while maximizing the internal uti-
lization of the data centers. Macuzzo et al. [4], addressed
the problem of optimal allocation for maximizing the
revenues of Cloud providers by minimizing the amount
of consumed electricity. Another green approach to re-
source allocation in Clouds can be found in the work
of Xiao et al. [5]. This work introduces the concept of
“skewness” as a way to measure the unevenness of the
Cloud servers’ utilization and formulate heuristics that
try to minimize it while saving energy at the same time.

Sheng et al. [6] propose a method for proportionally
scaling the resources among running tasks according to
their demand, aiming to reduce their execution times.
This technique targets self-organizing clouds that consist
of desktop computers connected over the Internet in a
best effort manner, and neglects SLA-violation aspects.
The latter is the focus of the work of Eyraud-Dubois
et al. [7], where SLA violations are considered when
maximizing the resource allocation ratio. Service level
objectives are also considered by Padala et al. [8], where
the authors present a model for migrating VMs from
overloaded nodes to available ones to avoid violations.

Chang et al. [9], formulated a resource allocation prob-
lem in which later tasks can reuse resources released
by earlier tasks, and solved it with an approximation
algorithm that can yield close to optimum solutions
in polynomial time. In [10], the same authors propose
an allocation problem for vTelco applications, where
arbitrary latency expressions are used to model the end-
to-end latency requirements of services to be placed.
Another work focusing on placement of Telecom services
can be found in An et al. [11], where trade-offs between
centralized versus distributed cloud architectures are
investigated. Alicherry et al. [12], tackled the problem
of optimal placement of VMs in Clouds for minimizing
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latency. Complexity is reduced by recurring to a hierar-
chical split of the placement problem into the 2 reduced-
complexity sub-problems of choosing the data centers
in which to place, then choosing the specific racks and
servers, and applying a partitioning of the application
graph to be placed. Jiang et al. [13], focused on the
problem of joint VM placement and route selection in
the context of a multi-path enabled data center where
traffic engineering techniques can be leveraged to ar-
bitrarily route individual VM traffic. Also, the authors
address migration of a minimum number of VMs for re-
optimizing the infrastructure at each new VM acceptance
or termination. Agarwal et al. [14], made a comparison
of various algorithms for placing VMs in centralized vs
distributed clouds, analyzing also the impact on user’s
latency for accessing the placed services. However, fluc-
tuation of workload is neglected in the above works. We
address it with a probabilistic approach.

Zhang et al. [15] investigated on probabilistic alloca-
tion of distributed services. In our prior work, the prob-
lem of optimum allocation of real-time workflows with
probabilistic deadline guarantees was tackled [16]. In
that work the main focus was on the probabilistic frame-
work allowing the provider to overbook resources in the
various time frames of each advance reservation request,
knowing the probabilities of actual usage/activation of
those services by the users. In the present paper, instead,
the focus is on the problem of hosting elastic services
whose workload may dynamically grow and shrink.

A way to estimate the probability that an end-to-
end deadline is respected for a given composition of
services is the one to build probabilistic models for the
performance achieved by a composition of distributed
services. For example, Zheng et al. [17], among others,
investigated on mathematical models to compute the
probability density function of the response-time of ser-
vice compositions under various compositional patterns.
Also, Zhang et al. [18] modelled probabilistic interactions
among multiple components of multi-tier cloud appli-
cations recurring to Markov Chains. However, in the
present paper we focus on variability of the workload for
services whose composition is deterministically fixed.

Further works exist in the area of VM allocation for
Cloud, Grid and Distributed computing, as witnessed by
the interesting comparison among 18 algorithms carried
out by Mills et al. [19], or the interesting architectural
concepts highlighted by Xu et al. [20], where also a
VM placement algorithm is introduced based on stable
matching theory, or in the work of Maurer et al. [21],
where a knowledge management based approach is pro-
posed for dynamic optimization of cloud infrastructures.

Compared to our prior preliminary work [22] on VM
allocation for elastic cloud services, this paper proposes
major enhancements to the way the problem is formu-
lated, introduces a novel heuristic to solve the problem,
and provides evaluation results validating the technique.

3 BACKGROUND AND NOTATION

The problem under study is largely inspired by the
OPTIMIS [23] and S(o)OS1 EU Projects: a CP is a business
entity that owns a set of physical hosts with potentially
heterogeneous characteristics in terms of processing
speed, architecture, and underlying network capabilities,
and establishes SLAs with clients for hosting distributed
services over a period of time. Each service is composed
of components that are horizontally scalable, i.e., they
can be deployed as a number of VMs spread across
different cores, processors, hosts and subnets.

The CP books in advance physical resources for host-
ing the virtualized components of the service. Each
component is characterized by specific resource require-
ments, as explained in Section 3.2. The VMs of the
components can be associated with affinity and anti-
affinity rules, which offer the client the ability to au-
tomatically keep VMs together on the same host, net-
work or cloud, or apart on different physical elements,
depending on the specific performance and reliability
requirements of the encapsulated components. For ex-
ample, affinity rules on host or network level allow for
respecting tight response-time constraints and reduce the
workload imposed on physical network elements. Anti-
affinity rules are useful when components should run
on separated hardware to achieve high resiliency or for
security/privacy purposes. For example, best practises
require that primary and secondary DNS servers are kept
apart on different hosts or subnets. In other cases, the
VMs of a service are meant to serve users that are geo-
graphically dispersed. Replicas2 should be placed close
to the users. These geographically dispersed resources
could be owned by the same CP or acquired through
the establishment of a federation with another CP.

According to the expected usage of the service, lower
and upper limits to the requirements of each component
can be specified, corresponding to the basic and elastic
resources that may be needed at runtime.

3.1 Cloud federation model

In case a service cannot be fully accommodated by the
CP, it may want to explore the option of federating with
other CPs (unless forbidden by affinity rules), before
rejecting the service. Also, there may be cases whereby
the CP is forced to federate, i.e., there are anti-affinity
rules in place specifying that only part of the service
and/or component should be admitted into the CP’s
cloud, whereas the other part should be allocated on
another CP’s cloud. In any case, the CP may consider to
federate either entire components or part of the compo-
nents, i.e., allocate some of their required VM instances
locally, and consider federating the rest of them.

1. More information is available at: http://www.soos-project.eu/
and http://www.optimis-project.eu/.

2. The term ’replica’ is used henceforth to refer to the replicated VMs
encapsulating a specific horizontally scalable component of the service
under examination.
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It is assumed that the CP has already established con-
tractual agreements with one or more CPs following the
Federated Shared Pool Option-Enabled Policy (FSPO),
following the federation model of Toosi et al. [24]. This
policy allows the CP to overcome the resources limi-
tation that may occur at negotiation time by acquiring
resources from other CPs. Resource prices are included
in the agreement and are dependant on the VM charac-
teristics. Usually, when a resource is rented in the context
of a federation, its selling price is lower compared to
the one that the CPs offer their own customers directly.
This price list may periodically be updated according
to the terms of the agreement, and thus there is no
need to query the CPs for such information during
the negotiation process. To be always cost-effective, the
federation cost is calculated using the cheapest available
resources in the federated shared pool.

Consequently, if the CP is not able to serve a request
locally, then part of it is outsourced to another CP
at the price defined in the pre-established federation
agreement. Thus, the federation cost that is awarded to
the CP with whom the federation is established, can be
calculated at admission control time based on its pre-
agreed price, and is subtracted from the actual gain of
the original CP. The latter is based on the pricing scheme
of the original CP, as advertised to its clients. This way,
the establishment of federation remains transparent to
the customers and is not reflected in the cost. Finally, in
case none of the federated CPs can at that time provide
the required resources for any reason, this will lead the
CP that has received the original request to reject it or
make a counter offer depending on its business policy.

3.2 Performance Model

In this work, it is assumed that the computing, network-
ing and storage capabilities of each physical host, as well
as those of the services, may be expressed in terms of a
single performance metric. For example, across a set of
hosts with similar capabilities in terms of the Instruction-
Set Architecture (ISA) of the CPUs, the computing ca-
pabilities may be approximated in terms of instructions
per second that each host can process, accounting for
the different clock speeds and number of CPUs and
cores available in each one of them. For example, a
host with a single 1 GHz CPU would have a computing
capability of 109, while a quad-core 3 GHz host would
have a computing capability of 12 × 109. Similarly, we
would roughly say that a service under given operat-
ing performance conditions (i.e. exhibited response-time
within the desired range, under a workload following
the expected pattern) might require 3× 109 instructions
per second. This would imply that the service should be
hosted either replicated over 3 of the mentioned single-
CPU machines, or simply as a single instance occupying
one of the CPUs of the mentioned quad-core system.

Alternatively, the performance metric might be de-
fined in terms of the performance achieved by a given

benchmark (e.g. LINPACK3) that is relevant for the
kind of applications that may potentially be hosted.
A more precise performance model could consider a
vector of metrics, e.g., as coming out of a number of
heterogeneous benchmarks (e.g. linear algebra, graphics,
integer and floating-point operations, etc.). However, in
the present work, a single metric is used for the sake
of simplicity, and its values are supposed to vary in
a range of positive real numbers. As implied by the
just mentioned example, we assume an ideal model of
software scalability, in which each service can arbitrarily
be decomposed in a number of possibly imbalanced repli-
cas, running over possibly heterogeneous hosts. In Cloud
environments, this is possible thanks to virtualization
technologies by which more and more VMs hosting
replicas of a service can be instantiated. Clearly, the
whole performance of a service is given by the sum of
the performance of the decomposed replicas.

Note that this assumption is easily verified in typical
Cloud computing services in which both vertical and
horizontal scalability may be applied to deal with a
large number of users potentially accessing the services.
In such a case, the multitude of replicas each service
instantiates serves requests on behalf of different (groups
of) users, operating essentially in isolation from the
others. When allocating multi-resource workloads we
assume that the splits in the various resources capacities
vary proportionally to each other, i.e., when hosting
half of the computational workload of a component
in a replica, we expect half of its networking traffic
to be generated by that replica as well, as detailed in
Section 4. Also, differently from a prior version of this
work [22], here we extend the performance model to
consider communication and synchronization overheads
due to the splitting (detailed in Section 4.2). Furthermore,
we assume that any additional overheads due to the
interference among VMs allocated on the same hosts are
already accounted in the abstract resource requirements
of the service. This seems reasonable in this context
as we deal with horizontally scalable services that can
span across various physical nodes, when needed (as
opposed to many small services that can be consoli-
dated on the same host). However, investigations on
how to extend the model with a more informed inter-
VM interference overhead model are reserved for future
work. Note also that the impact of the inter-VM temporal
interferences can be kept under control using proper soft
real-time schedulers in the hypervisor, as done in our
prior works [25], [26].

3.3 Resources Topology
The provider’s resources may generally be considered
as an interconnection of (potentially heterogeneous)
networks that interconnect (potentially heterogeneous)
computing nodes. For example, various LANs enclosing

3. More information is available at: http://www.netlib.org/
linpack/.
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multi-processor computing nodes are interconnected by
means of one or more WANs. Therefore, the network
topology is characterized by:
• A set of computing nodes, or hosts: H = {1, . . . , NH} .

Each host j ∈ H is characterized by an available
computing capacity Uj ∈ R+, which expresses the
value of a given system-wide reference performance
metrics (see Section 3.2), and an available storage
capacity Mj ∈ N, expressed in bytes.

• A set of available subnets: N = {1, . . . , NN } . Each
subnet n ∈ N is characterized by a maximum ag-
gregate bandwidth Wn ∈ R+, expressed in bytes/s.

• The network topology, specifying which hosts Hn ⊂
H are connected to each subnet n ∈ N .

Also, for each hosts pair j1, j2 ∈ H, we denote by
Pj1, j2 ⊂ N the set of networks to be traversed from
j1 to j2, according to the available routing information.
Similarly to what done in [16], each host is associated
in the model with a logical “loopback” subnet useful
to model communications among different components
possibly deployed on the same host. In order to prop-
erly deal with federation, we introduce in the physical
topology notation a set of special hosts HF ⊂ H repre-
senting federated providers. Each special host j ∈ HF is
characterized by (big) aggregated computing and storage
capacity limits Uj , Mj . If these are unknown, then the
corresponding capacity equations below can be omitted.
Also, each of them would be placed throughout the
topology in a place that is representative of the network
path necessary to reach the federated provider.

3.4 Services Notation
The following notation is used to refer to services:
• Set of service instances (referred to simply as services

from here on): S = {1, . . . , NS} .
• Each service s ∈ S is a linear workflow of
ms components (encapsulated inside VMs): Ss ,
{ξs1, . . . , ξsms} .

Each component ξsi ∈ Ss has horizontal scalability
capabilities, i.e., it can replicate as multiple VMs to be
deployed on multiple hosts, and it is characterized by:
• minimum computing, network and storage require-

ments θsi , b
s
i and ψsi needed by ξsi for basic operation;

• maximum computing, network and storage require-
ments Θs

i , B
s
i and Ψs

i , also called elastic requirements,
that ξsi may fruitfully exploit; maxima are useful
for modeling services with intrinsic scale-up limita-
tions, or for accounting for maximum per-customer
quota of the provider (e.g., Amazon 20 VMs per
availability zone), or also for accounting for budget
restrictions of customers.

When splitting a component across multiple replicas,
we may have a minimum amount of resources capacity
below which it is not worth to have a replica, i.e.:
• minimum computing %si , network νsi and storage
ζsi requirements allocatable to each instance; these

easily map to the characteristics of the minimum
VM “size” as offered by typical cloud providers.

For multi-resource components with non-negligible re-
source requirements, we may optionally assume them to
be linearly interdependent with each other. Indeed, for
web-based systems, it often happens that the processing,
networking and disk access work-loads be proportion-
ally dependent on the number of submitted requests per
second. Some times the maximum memory occupation
follows also the same dependency. Furthermore, services
with significant network/disk traffic need a proportion-
ate CPU allocation to properly handle it.

On a related note, the small, medium and large sizes
in which Amazon “m1.*” instances can be rented, corre-
spond to a nearly linear inter-dependence among CPU,
RAM and disk capacity4. Introducing these optional
constraints whenever possible allows us to reduce the
number of independent variables, thus makes the pre-
sented problem simpler. However, these constraints can
be left out for other cases in which such assumptions
would not hold. Concerning storage requirements, we
consider explicitly only one type of storage requirement,
which may equally represent the amount of needed
RAM or local HD storage. The model can easily be
extended to consider both of them (not shown for the
sake of brevity). The notation used throughout the paper
is conveniently summarized in Appendix I.

3.5 Service Level Agreement Model
As already described in Section 3, the CP establishes
SLAs with the clients for hosting their services over a
period of time. The SLA for a given service s ∈ S carries
the following parameters:
• The description of the service workflow Ss, which

must be complemented by the requirements of each
component ξsi : θsi , Θs

i , b
s
i , B

s
i , ψ

s
i , and Ψs

i .
• A minimum probability φs that the required re-

sources are actually available when the request
arrives, namely that there are sufficient resources
for the activation of the VMs when needed (useful
when overbooking, see Section 4.5 for details).

• Gain Gs for the CP in case the service is accepted.
• Penalty P s for the CP if the service fails to meet its

QoS restrictions.
Furthermore, it is assumed that the CP has means to
estimate the eco-efficiency Ej of each host j ∈ H. The
term eco-efficiency refers to consuming less energy to
produce the same amount of useful output, and has
a positive meaning, i.e. the higher its value, the more
positive its effect is (interested readers may refer to [27]
for further details on how to compute it).

4 PROBLEM FORMULATION
Using the definitions in Section 3, we will now formalize
the problem under study, hereinafter referred to as the

4. Compare the ECU, Memory and Storage columns of the table at:
http://aws.amazon.com/ec2/instance-types/#instance-details.
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Admission Control Optimization Problem (ACOP). Note
that we introduce a wide set of possible constraints, but
in some real-life problem instances, it may be possible
that some of these are not needed and can be omitted.

4.1 Variables
First of all, let us introduce the unknown variables.

The locally allocated computing, network and storage
capacity for the components on the hosts are denoted
by xsi, j ∈ R+, ysi, j ∈ R+ and zsi, j ∈ R+ respectively, with
s ∈ S, i ∈ Ss, j ∈ H. If a component ξsi is not given
any computing capacity on a host j ∈ H, then xsi, j =
ysi, j = zsi, j = 0. The allocated elastic computing, network
and storage capacity for each component is

∑
j∈H x

s
i, j −

θsi ,
∑
j∈H y

s
i, j − bsi , and

∑
j∈H z

s
i, j − ψsi , respectively.

As components may be deployed on federated
providers, we introduce, ∀s ∈ S, ∀i ∈ Ss, the derivative
variables fxsi ∈ R+, fysi ∈ R+ and fzsi ∈ R+ repre-
senting the federated computing, network and storage
capacity for the components: fxsi =

∑
j∈HF x

s
i, j , fy

s
i =∑

j∈HF y
s
i, j , fz

s
i =

∑
j∈HF z

s
i, j . If a component ξsi is not

federated, then fxsi = fysi = fzsi = 0. Thus, the overall
accepted computing, network and storage capacity for
a component are xsi =

∑
j∈H x

s
i, j , y

s
i =

∑
j∈H y

s
i, j , and

zsi =
∑
j∈H z

s
i, j , respectively.

Note that the capacity to be considered for federation
is allocated roughly to the special hosts HF ⊂ H that
represent the federated providers. These may use a sim-
ilar admission control mechanism to the one described
in this paper, or any other, to manage their resources. In
order to accept a service by handing part of it over to a
federated party, a CP has to consider trade-offs among
availability, costs of its internal resources and extra costs
imposed by the federated party, as it will be explained
later in Section 4.3. Whenever the assumption of lin-
ear interdependency among computing, networking and
storage requirements holds, some variables might be
obtained as derivative of others, like in:{

ysi, j = αsix
s
i, j + βsi

zsi, j = γsi x
s
i, j + δsi

(1)

for some component-dependent constants αsi , β
s
i , γ

s
i ,

δsi that can be obtained by standard linear regression
techniques. Note that the actual decomposition of each
component ξsi into VMs on the hosts j ∈ H where
xsi, j > 0 is a lower-level detail that is not needed
to be addressed in the formulated allocation problem.
For example, a single (possibly multi-core) VM may
be instantiated on each mentioned host for ξsi , and
allocation provided to various VMs may be guaranteed
and isolated in a strong sense by employing proper real-
time scheduling techniques [25].

4.2 Allocation Constraints
The overall computing, networking and storage capacity
(allocated and federated) for each ξsi should not exceed

the limit defined by its maximum elastic requirements:
∑
j∈H x

s
i, j ≤ Θs

i∑
j∈H y

s
i, j ≤ Bsi ∀s ∈ S, ∀i ∈ Ss.∑

j∈H z
s
i, j ≤ Ψs

i

(2)

The additional computing and storage requirements
imposed on each host j ∈ H (including any federated
provider j ∈ HF ) cannot overcome the residual capacity:{ ∑

s∈S
∑
i∈Ss x

s
i, j ≤ Uj∑

s∈S
∑
i∈Ss z

s
i, j ≤ Mj

∀j ∈ H (3)

Network constraints are formulated later in Eq. (7).
Another possible upper constraint is the one restricting
the overall expense for a customer, in cases in which the
reserved resources have pre-specified unit costs. In such
a case, the overall cost would easily be expressed as a
linear combination of the xsi, j , y

s
i, j and zsi, j variables.

We introduce into the problem formulation some
derivative Boolean variables that will shortly turn out
to be useful:

{
ηsi, j
}
, with a value of 1 if the component

i ∈ Ss is given at least the minimum computing %si ,
networking νsi and storage ζsi requirements on host
j ∈ H and 0 otherwise. These can be put in linear
relationship with the xsi, j , y

s
i, j and zsi, j through the

following constraints:


xsi, j − %si ≥ K(ηsi, j − 1)

xsi, j ≤ Kηsi, j
similar for y and z

∀i ∈ Ss, ∀j ∈ H

(4)
where K is a sufficiently large constant (refer to
Appendix VI for details on its calculation). The
above inequalities constrain the allocation variables{
xsi, j , y

s
i, j , z

s
i, j

}
to give enough capacity on each host

j so as to meet the minimum splitting requirements
{%si , νsi , ζsi } for each component with ηsi, j = 1, or alter-
natively they force them to be 0 with ηsi, j = 0. For a
proof, refer to Appendix IV.

Similarly, we introduce the derivative Booleans
{
χsi, n

}
encoding whether or not for each component there is any
replica allocated within each subnet:


∑
j∈Hn x

s
i, j ≥ K(χsi, n − 1)∑

j∈Hn x
s
i, j ≤ Kχsi, n

similar for y and z

∀i ∈ Ss, ∀n ∈ N (5)

Finally, we introduce the derivative Booleans {ηsi }
encoding whether for each component there is any al-
located replica within the CP:


∑
j∈H xsi, j − θsi ≥ K(ηsi − 1)∑
j∈H xsi, j ≤ Kηsi

similar for y and z

∀i ∈ Ss, ∀j ∈ H (6)

The above equations also impose that the minimum
overall allocations per component θsi , bsi and ψsi are
respected, if the component is accepted. Finally, we
introduce the derivative Boolean variables ηsi1, i2, j1, j2 =
ηsi1, j1 ∧ η

s
i2, j2

encoding whether or not components i1
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and i2 have, respectively, non-null deployed capacity on
hosts j1 and j2. Appendix V shows how to introduce, via
linear constraints, a Boolean variable forced to encode
the logical AND between two or more Boolean variables.
Then, the network capacity constraints can be stated as:

∑
{
j1, j2∈H|n∈Pj1, j2

}
∑
s∈S

∑
i∈Ss\

{
ξs
ms

} ηi, i+1, j1, j2
y
s
i, j1
≤ Wn, ∀n ∈ N

(7)

This kind of constraint can also be used to model data
flows in and out of the whole service workflow.

When horizontally scaling a service, it may happen
that the scaled out version of the service needs additional
resources as compared to the single-instance version, in
order to operate correctly, due to additional synchro-
nization and communication needed across its various
instantiated replicas. A common model that accounts
for such overheads is one [28] in which the overheads
grow linearly with the number of replicas, but other
models are possible as well [29]. The linear model may
be considered by rewriting Eq. (4) after increasing the
minimum required per-host resources %si , ν

s and ζsi of a
quantity that is proportional to the number of hosted
replicas. All equations that serve as constraints, i.e.,
from (2) to (6), can be similarly reworked to account
for synchronization and communication overheads (the
exact formulation is omitted for the sake of brevity).

4.3 Partial admittance and federation
In case a service cannot be fully allocated within own
premises, the CP may want to consider federating with
other CPs, before rejecting the service. To model this, we
introduce a further set of derivate variables:
• Booleans {τsi } encoding whether for each compo-

nent there is any capacity that should be federated:{
fxsi ≥ K(τsi − 1)

fxsi ≤ K · τsi
∀i ∈ Ss (8)

• Booleans {υsi } encoding whether for any component
replica is allocated either within the CP or federated
(i.e., υsi is the logical OR between ηsi and τsi ) :{

υsi ≤ ηsi + τsi
2 · υsi ≥ ηsi + τsi

∀i ∈ Ss (9)

These are easily justified with the dual reasoning of
the one reported in Appendix V.

• Ratio of the service s ∈ S that has been accepted
whether locally or federated: xs =

∑
i∈Ss υ

s
i

ms , where
ms is the number of components of service s.

When it comes to the cost of federation, it is assumed
that it depends on the characteristics of the component,
i.e. whether it is computational, network or storage in-
tensive. To this direction, we assume that the federation
cost of a component is a function of the requested
resources Fc(fx, fy, fz) and it can derive from a given
price list that the CP uses to calculate the corresponding
cost (please, refer to Appendix II for details).

4.4 Affinity and anti-affinity rules
Apart from the introduced allocation constraints, dif-
ferent types of services and components may require
special treatment when it comes to their deployment. To
this direction, an extra basic set of conditional affinity
and anti-affinity constraints can be added to the alloca-
tion problem. For each service s ∈ S, we allow for the
specification of nsA affinity and anti-affinity constraints.
Each (anti) affinity constraint c ∈ CsA = {1, . . . , nsA}
involves a subset σsc ⊂ Ss of components, and is formally
stated as described below.

In terms of affinity, the components ξsi of the combi-
nation σsc may be constrained to be allocated:
• in the same physical node:

∑
j∈H h

s
σsc , j
≤ 1,

• in the same subnet:
∑
n∈N δ

s
σsc , n

≤ 1, where {hsσsc , j},
{δsσsc , n} are Boolean variables that become 1, if host
j or subnet n respectively is used in the allocation
of at least one component i of combination σsc .

• in the same cloud:∀i ∈ σsc , τ si = τsi+1.

The above rules can also cover only one component. In
this case the rule affects the allocation of the instances
of the specific component.

In terms of anti-affinity, the components ξsi of the
combination σsc may be constrained to be allocated:
• in different physical nodes: ∀j ∈ H,

∑
i∈σsc

ηsi, j ≤ 1,

• in different subnets: ∀n ∈ N ,
∑
i∈σsc

χsi, n ≤ 1,

• in different clouds:
∑
i∈σsc

ηsi ≤ 1.

Anti-affinity rules can also be specified on the instance
level of a given component, to regulate the distribution
of its replicated VMs. Therefore, a component ξsi must
be replicated across at least:
• ksi different nodes, if accepted:

∑
j∈H η

s
i, j ≥ ksi ηsi ,

• lsi different subnets, if accepted:
∑
n∈N χ

s
i, n ≥ lsi ηsi .

4.5 Probabilistic Elasticity
In this section we propose a probabilistic approach to
the problem of allocating extra resources for elasticity
reasons. The basis of this approach lies in the existence
of prediction models that are able to forecast resource
usages using historical monitoring data. Indeed, there
are several works in the literature, such as [30], that
produce statistical information in the form of probability
distributions of the resource requirements experienced
at run-time by a service in virtualized environment.
Given that such statistical knowledge is known, then
it can be leveraged inside the problem to employ an
over-allocation strategy ensuring the service can run
flawlessly with at least a minimum probability φs (see
Section 3.5). In the following, we focus on computing re-
quirements only, but the line of reasoning extends easily
to the consideration of network and disk requirements.

We assumed that the CP has knowledge about the
probability that a given component may use a capacity
up to xsi . This can be formally described by the cu-
mulative distribution function Fsi (xsi ) = P [Xs

i ≤ xsi ] of
the real-valued random variables Xs

i , representing the
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computational capacity that a component i may require
at runtime. In order to deal simultaneously with all
the components of the service, this can be generalized
as: Fs(xs1, .., xsms,), where ms is the number of the
components of service s. Then, in order for a service
s to be admitted into the system, instead of reserving
resources for the maximum amount of elasticity require-
ments deterministically, it is sufficient to guarantee that
the probability for service s to find enough available
resources when actually required, denoted from now on
as Φs, be subject to:

Φs ≥ φs. (10)

This reduces the resources that need to be booked for
elasticity reasons, by exploiting statistical information,
as demonstrated in Section 7. Note that, if φs = 1,
then the deterministic case is obtained as a particular
case of the probabilistic one, i.e., the model will operate
deterministically if the client asks for 100% guarantees
in the SLA.

In order to formalize Φs, we propose two alternate
models. When resources fluctuation of individual ser-
vice components are independent of one another, the
overall service availability is lower-bounded by the
product of the individual service availabilities: Φ =
P [Xs

1 ≤ xs1, .., Xs
m ≤ xsms ] ≥

∏
i∈Ss [1 − (1 − Fs

i (xsi ))υ
s
i ],

where υsi is the Boolean variable that becomes 1 when the
component i is accepted, either allocated within the CP
or federated (see Section 4.3). In some particular cases,
the components of the service are tightly dependent on
one another, therefore the service availability may be
approximated as the availability of the least available
component:

Φs = P
[
Xs

1 ≤ xs1, .., Xs
m ≤ xsms

]
= mini∈Ss [1− (1−Fs

i (xsi ))υ
s
i ].

(11)

This formulation will concretely be applied in Section 7.

4.6 Objective Function
As already explained, the elastic capacity may be quite
large compared to the basic one and thus it plays a
significant role in the cost of hosting the service. Clearly,
from a provider perspective, a metric of the goodness
of an allocation may be significant of the additional
costs possibly needed to admit the services. In order to
formalize this, we introduce the extra cost ωj associated
with turning on an unused host j ∈ Hoff ⊂ H. Then,
a simple term to consider is the total additional cost C
associated with turning on unused hosts:

C =
∑

j∈Hoff

hj · ωj , (12)

where hj are Booleans encoding whether or not there’s
any capacity allocated on host j. They may be defined
as logical OR for all i of the ηi, j Booleans through
a set of linear constraints, as shown in Appendix V.
Furthermore, it is in the CP’s best interest to extend the

optimization goal so that the eco-efficiency of the hosts
Ej (see Section 3.5) is considered. To this direction, the
overall objective is complemented by the term E that
expresses the eco-efficiency score of the hosts that are
used to form the allocation pattern:

E =
∑

j∈Hoff

hj · Ej . (13)

The cost of federation for each component
needs also to be considered as follows:
CFs =

∑
i∈Ss Fc(fxsi , fy

s
i , fz

s
i ). Also, the probabilistic

framework, as introduced in Section 4.5, implies that
with a maximum probability of Φs , 1 − Φs, an
admitted service is not expected to find the needed
extra resources available, leading to the necessity to
pay the penalty P s back to the client. Therefore, for
each service that is admitted into the system (xs > 0),
the expected penalty Ps = ΦsP s, should be subtracted
from the immediate gain Gs. By taking into account all
the different objectives mentioned above, we obtain the
following multi-objective function:

max
∑
s∈S x

s(Gs − wPPs − wCCFs)− wCC + wEE , (14)

where wP , wC , and wE are used as weights for adapting
the heterogeneous quantities in the sum and configuring
their relative importance. For example, a profit-driven
policy can be expressed by setting the weight wE equal
to zero. In this way, the eco-efficiency aspect is not
considered in the optimization process, and the optimal
solution will be the cheapest one. Also, given that the
CP has no means to calculate the eco-efficiency of its
hosts, this aspect can be easily unplugged by the model
by simply setting the value of wE to zero. Different
acceptance policies can be applied by configuring these
weights, as demonstrated later on in Section 7.

5 ACOP HEURISTIC SOLVER

The ACOP problem formalized in Section 4 falls within
the class of Mixed-Integer Linear Programming (MILP)
optimization problems in its simplest deterministic vari-
ant, or within the one of Mixed-Integer Non-Linear
Programming (MINLP) when probabilistic availability
constraints are in place. In addition to its precise math-
ematical formulation that is solved by global solvers
with great complexity, we developed an approximation
algorithm, namely the ACOP heuristic, that can yield
near-optimal results but at much higher speeds than the
optimal MINLP solvers. The basic steps of this heuristic
approach are the following:

1) Get all valid combinations of the components for
each service by taking into consideration the affin-
ity or anti-affinity rules that are in place.

2) For each valid combination, calculate the gain, and
the total resource capacity that it uses.

3) Iterate over all combinations of each service and
find a possible allocation, if one exists. Store the
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combinations that maximize gain for a given com-
puting capacity.

4) Compute the cost of the stored allocations.
5) Output the allocation that maximizes the gain mi-

nus the cost.
Each step is detailed in the following sections.

5.1 Valid combinations
First, we reduce the search space by assuming that the
computing, network and storage capacities are discrete.
In a typical case we can consider 3 discrete values of
computing capacity for each component: one providing
the maximum needed capacity Θs

i , one providing the
minimum acceptable value θsi , and one intermediate
value. Network and storage capacities have 3 discrete
values too. They may optionally depend linearly on
computing capacity, as stated in Section 3.4, leading to
a further reduction of the combinations of values of the
problem variables satisfying the allocation constraints.

The notation Σs refers to the set of valid combinations
of x, y and z variables, and σs to refer to an individual
combination respectively. The valid combinations Σs

should satisfy the constraints described in Section 4, i.e.,
the allocated computing, network and storage capacity
should be enough to cover the minimum probability
of availability φs. The number we need to examine
can be reduced assuming that the availability of the
service is determined by the minimum availability of
all components (see Section 4.5). That means that if we
increase the capacity above a point for a certain com-
ponent availability might remain the same if it exceeds
the overall minimum availability so far. Subsequently
neither the gain will change while the cost might be
higher. If we avoid examining those cases while iterating
the total number of cases can be computed as follows.

Theorem 1. For a given service s that consists of ms

components the number of possible sets of constraints is 3m
s

,
and this number is reduced to at most (3ϕ2)m

s

, where ϕ is
the golden ratio, assuming that the availability of the service
is determined by the minimum availability of all components
(please, refer to Appendix III for details).

When considering the option of federating part of the
capacity, again the best assumption is that we can have
three levels of federated capacity, minimum (possibly 0),
maximum and an intermediate value which translates
to 3m

s

possibilities as well. Thus, the overall number of
constraints is at most (3ϕ2)m

s

. In addition, we should
consider the fact that some components might be feder-
ated so if there are ms components, there are 2m

s

subsets
of components that can be allocated. Considering that
there can be both subsets and 3 different levels of
computing, network and storage capacity, one can verify
that the number of all valid combinations are equal to∑ms

i=0

(
ms

i

)
· (3ϕ2)i = (3ϕ2 + 1)m

s

. When the components
are more than 6, the order of magnitude of the valid
combinations grows significantly, drastically increasing

1: function ACOP(S,H)
2: cmax := min(Θs

i , sum(Uj)) . initialization of
maximum capacity as the minimum of total required and
total available

3: gain[0..cmax] := 0 . array of gains
4: combs[0..cmax] := {nil} . array with lists of

combinations (initially empty)
5: for all s ∈ S do . for each service
6: Σs := get_valid_combinations(s)
7: for all σs ∈ Σs do . for each valid combination
8: for c = 0..cmax do . for each component in a

combination
9: if (c ≥ cσs) ∧ (gain[c] ≤ gain[c − cσs ]) ∧

(is_alloc_found(combs[c− cσs ] ∪ σs, H) then
10: _gain[c] := gain[c− cσs ] +Gs . update

auxiliary arrays
11: _combs[c] := combs[c− cσs ] ∪ σs
12: end if
13: end for
14: end for
15: gain := _gain . update result
16: combs := _combs
17: end for
18: return (gain, combs)
19: end function

Figure 3. ACOP Heuristic solver algorithm

the associated computational cost. However, the possi-
ble combinations are significantly reduced when (anti-
)affinity constraints are active.

5.2 Calculation of objective
It is easy to verify that one part of the objective function,
i.e. Gs =

∑
s∈S x

s(Gs − wPPs − wCCFs), is independent
of the allocation of the components and depends only
on the given combination and the allocated part of the
service. Variable xs can be easily computed depending
on whether each component is involved in the allocation
or not. Also, given that Ps = ΦsP s, we can compute
this factor using Eq. (11), as the computing capacity is
known for each component. Therefore we can compute
the whole term as all other values are constant for each
service. For each combination, we also need information
about the (anti-)affinity rules and the total capacity of
each component, so that no constraint is violated.

5.3 Possible allocations
As already explained in Section 5.1, the computing ca-
pacity was discretized, i.e. 1GHz = 1 unit of computing
capacity. Using the notation in Section 3, the pseudo-
code in Figure 3 formalizes the ACOP approximation
algorithm for discretised capacities.

The inputs of the algorithm are the set of services
S and the set of hosts H5. At lines 3 and 4 we de-
fine the structures that will store the best gains for a
given capacity and their respective lists of combinations.
Combinations will contain any information needed for
allocation i.e. which components are included, what

5. Indexes s and j are related to the sets S and H respectively.
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is their computing,network and storage capacity, and
if there are any constraints. At line 6, the function
get_valid_combinations, is not defined due to space con-
straints but its logic is explained in detail in Section 5.1.
At lines 9 to 11 a dynamic programming approach is
followed which resembles Knapsack. The purpose is
to find the combinations of components that maximize
gain for a given capacity with the additional constraint
that no two combinations of the same service should
appear. Therefore the auxiliary matrices are used. It
is important to notice that the corresponding items of
Knapsack algorithm are the combinations of our algo-
rithm and not the components, while their total capacity
is the corresponding item size. If the combination under
examination fits in capacity, its gain gain[c − cσs ] + Gs

improves the current best gain _gain[c] and at the same
time an allocation of a new set of combinations is found,
then the auxiliary matrices are updated. At lines 15 and
16 when all combinations of a service are examined the
actual gain and combination arrays are updated.

The ACOP heuristic does not find all possible alloca-
tions nor the most profitable ones in all cases. Even the
problem of finding if a set of components fits in a Cloud
is an NP-Hard problem and practically impossible to
solve effectively. Instead, the problem of finding whether
an allocation is possible or not, is reduced to a decision
problem of bin packing in case affinity rules are active
for every component (each component must be allocated
in one host) and all hosts have the same capacity:

∑
i∈Ss

ϑi · ηsi ,j ≤ Uj , j ∈ H∑
j∈H

ηsi, j = 1, i ∈ Ss

ηsi, j ∈ {0, 1}, i ∈ Ss, j ∈ H

(15)

where ϑi is the total computing capacity of a component
(which is a constant value between θsi and Θs

i ), η
s
i, j is a

Boolean variable indicating if component i is used in
host j, and Uj is the capacity of hosts. This is of course
a special case of input for our problem but that proves
that there are instances of the problem that are difficult
to solve, so an approximation method should be used.
It should be noted that network and storage capacity
are also considered as constraints of the actual algorithm
and that makes the problem even more difficult.

At line 9, is_alloc_found function uses First Fit by taking
into account any additional constraint. The complexity
of this step highly depends on the constraints of com-
ponents but in the worst case we have to check for
all discrete computing capacities of all components of
each service if they fit in any host (in case vms fit only
in the last host examined). Thus the complexity using
the already defined notation is O (Ns ·ms

max ·NH ·Θs
i ).

Finally, it is easy to show that the complexity of the
algorithm is O

(
csmax · (3ϕ+ 1)m

s
max ·NS

)
multiplied by

the complexity of is_alloc_found.

5.4 Cost of the allocations
The cost of the allocation could be computed in the
previous step of the algorithm in the process that checks
if the allocation is possible. However, the combinations
that are finally rejected are many more than those stored
and computing the allocation cost for each one of them
would add a significant overhead. Now the number of
the costs that are computed correspond to cmax. The cost
of allocation corresponds to the term C = (−wCC+wEE)
of the objective function, where C and E are computed
by Eqs. 12 and 13 respectively. The algorithm tries to
maximize this term by selecting hosts with lower cost
(C) and higher eco efficiency (E).

5.5 Result computation
In order to find the best result, we calculate the objective
function for each allocation previously found. This is
equal to (Gs − C). The cost of hosting a service is
generally lower than the gain, so the more computing
capacity we allocate the more gain we obtain. However,
an increase in capacity may cause minor changes in the
availability and an insignificant increase in gain, thus the
objective function is not necessarily greater when more
capacity is allocated. Thus, the objective function needs
to be computed for all possible values of the capacity.
The complexity of doing that is proportional to cmax.

6 EVALUATION

In this section, we present a detailed performance eval-
uation of the formal MINLP formulation of the ACOP
problem, as formulated in Section 4, and its heuristic ad-
hoc algorithm, discussed in Section 5. The formal MINLP
optimization problem was modelled on the General
Algebraic Modelling System (GAMS)6. For solving it, we
used the Branch and Reduce Optimization Navigator
(BARON) [31], which is a computational system for
solving non-convex MINLP problems to global optimal-
ity. The reason for focusing on BARON was that other
MINLP solvers for non-convex problems, either failed to
solve the problem or converged much slower.

In the conducted experimentation, different model
profiles were generated for different number of services,
components and subnets. The simulated problem types
included many of the features described in Section 4 but
not all of them, as detailed below in the various cases.
Correspondingly, the problem formulations have been
simplified whenever applicable. All required inputs,
such as the requirements of the components, the capacity
of the hosts, etc., were generated so that they have
constant values across all profiles for better comparison.
The average running time for each model profile was
computed across 5 repeated experiments to increase the
accuracy. All results were obtained using BARON with
GAMS v23.7 and Python v2.7.3, which was used for the

6. GAMS Development Corporation. General Algebraic Modeling
System (GAMS). Available at http://www.gams.com/.
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implementation of the ACOP heuristic solver, on AMD
FX Six-Core 3.32 GHz processor with 8 GB of RAM.
BARON was configured to use 1 GB of RAM with 1%
accuracy and to halt after 500 seconds.

6.1 Performance evaluation

Figure 4 plots the CPU time consumed by the ACOP
heuristic and BARON solvers to find the optimal solu-
tion for each of the examined profiles of different sizes.
The number of hosts to be considered as candidates
for allocation is plotted along the x-axis reaching a
maximum of 100, whereas the CPU time consumed is
plotted along the y-axis. In order to test the problem
under a difficult input, anti-affinity rules on network
and host level were used, whereas all other values
were constant. The three lines that are plotted for each
solver correspond to three different indicative profiles.
For example, profile(4,3,10) considers 4 services with 3
components each and 10 subnets. Note that the maxi-
mum requirements, i.e., number of VMs to be considered
for allocation for each component, was set to 5.

Although the results prove that the problem is
tractable and that the BARON solver can yield the op-
timal solution, they indicate that the cost of an accurate
solution may be considered not acceptable even for small
to medium-sized problems. Thus, the unpredictable run
times and the lack of scalability indicate that the usage of
global MINLP solvers is unsuitable for on-line admission
control. Note that for larger sized problems, the running
times for BARON proved to be impractical (hundreds
of minutes in some cases) and for this reason they are
not reported here. Also, the usage of approximation
techniques, such as setting the optimality threshold of
the BARON solver to much higher values, severely
impacts the quality of the solution without decreasing
the consumed time to an acceptable value.

As it can be seen, the solutions obtained by the ACOP
heuristic are approximately two to three orders of magni-
tude faster than those obtained by BARON for 2 out of 3
profiles. For the profile(1,6,3), there are some interesting
conclusions that can be drawn. The increased number of
components and the fact that there are no affinity rules
in place generates a large number of allocations to be
examined by the ACOP heuristic. In addition, the anti-
affinity rules that are active result in more checks and
increase the time needed by the ACOP heuristic to find
a valid allocation. As a result the average performance
of the ACOP heuristic is worse that BARON’s in this
profile, whereas BARON performs better than in other
profiles. This may be due to the fact that BARON
examines much less combinations and all other values
are relatively small so the total number of equations
is smaller and easier to solve. Another observation is
that even though the ACOP heuristic performs worse
on average on this specific profile, it still demonstrates
better scalability as the number of the hosts increases
and starts to outperform BARON as the "bottleneck” of

Figure 4. CPU times for ACOP heuristic and BARON
solvers.

Figure 5. CPU times of ACOP heuristic up to 5000 hosts.

the algorithm does not depend on the number of hosts
due to the usage of the First Fit algorithm.

The ACOP heuristic solver was then used to solve
much larger problems, whereby, as already mentioned,
BARON was proven to be impractical. Figure 5 plots
the solution times of the ACOP heuristic solver with
respect to the number of hosts, reaching a maximum
of 5000 hosts. As shown, the running times scale with
the number of hosts, subnets, services and components,
with the latter having more negative impact on the solu-
tion time (profile(1,6,3)). Specifically, the number of the
components dominate as a factor that affects execution
time, whereas the number of the services becomes more
significant as the number of the hosts increases. It is
evident that the number of hosts does not have any
significant impact once an allocation is found in a subset
of hosts, with the execution times remaining relatively
steady up to 5000 hosts.

6.2 Solution quality evaluation
Figure 6 plots the ratio of the value that the objective
function is given using the BARON solver to the one
obtained by the ACOP, with the optimality threshold for
BARON set to 0.1%. The results show that, for profiles
(4,3,10) and (6,2,4) the ACOP heuristic’s solution quality
increased with the number of hosts from 98% for 5 hosts,
and maintained 100% from that point on. Interestingly,
those 2 profiles are also the one’s that the ACOP heuristic
outperformed BARON by three orders of magnitude
(see Figure 4). For profile (1,6,3), the ACOP heuristic’s
solution quality was only 60% of the optimal as hosts
increased, dropping from about 90%, its initial value.
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Figure 6. Solution quality of ACOP heuristic vs BARON.

Table 1
Hosts and services characteristics

j ∈ H κj Ej n ∈ N
j1 − j10 2.5 0.5 n1

j11 − j20 3 1 n2

S s1 s2

Gs 100 120

Ps 10 12

Although BARON may perform better in specific cases
in which the number of components is relatively large,
this happens only when the number of hosts is kept
very low, which is not realistic when it comes to Clouds
that usually comprise thousands of hosts. Also, due to
the inherent non-convexity of the presented problem, it
is not easy to predict BARON’s running times, which
might end up much worse than expected, even in very
similar cases. As it can be concluded, the combination of
the much faster running times, and the high quality of
its solutions, make the ACOP heuristic far more suitable
for on-line admission control.

7 CASE STUDY

In this section, we highlight the way the flexibility that is
introduced by the probabilistic framework, as described
in Section 4.5, is regulated by the weights of the dif-
ferent factors in the multi-objective function, and the
way changing these weights results in different solution
patterns in terms of cost, allocated capacity, selected
hosts, etc. We consider a case study of 2 different subnets
{n1, n2} of the same capacity (1Gb/s). Each subnet
interconnects 10 unused hosts with different usage costs
ωj and eco-efficiency scores Ej

7, as shown in Table 1.
The CPU cores of the hosts are considered homogeneous
and of a capacity of Uj = 2.0GHz for hosts j1 to j18 and
1.0GHz for the remaining two hosts j19 and j20. Thus,
their total computing capacity sums up to 38GHz.

Under these settings, we consider 2 services {s1, s2}
requesting admission, as shown in Table 1. Both services
consist of 2 components {ξs1, ξs2}, that have the same
basic and elastic computing capacity: θsi = 1GHz, and
Θs
i = 10GHz. Thus, the maximum computing capacity

7. The eco-efficiency scores were normalized between 0 and 1, i.e. in
the simulation example, the value 0.5 means that the related hosts were
50% less eco-efficient compared to those that demonstrated maximum
eco-efficiency, which was set to 1.

Table 2
Indicative cases under examination

Case wE φs1 Case wE φs1

I 0 0.8 IV∗ 0 1
II 0 0.9 V∗∗ 0 0.8
III 0 1 VI 1 0.8

∗ Affinity for s1 components on cloud level
∗∗Anti-affinity for s1 components on network level

that can be accepted for deterministically admitting both
services is 40GHz, which exceeds the available one
(38GHz). For simplicity and without loss of generality,
we consider that the cumulative probability distributions
of the components capacity requirements Fsi (xsi ) (see
Section 4.5) are independent and uniformly distributed
in the interval [θsi , Θs

i ] (i.e. probability Φs is given by
Eq. (11)), and that their network and storage require-
ments are negligible compared to the available capacity.

Six indicative cases are examined with each of them
having a different combination of availabilities and CP
acceptance policies, as expressed by the different values
of the weights in the objective function and (anti-)affinity
rules in place (Table 2). The values of φs, which is the
minimum probability that the required elastic capacity
will be actually available when needed, is kept fixed to
0.8 for service s2, whereas for service s1 it takes different
values, as shown in Table 2. The sum of the weights is
equal to 1 in all cases. Table 3 summarizes the obtained
solutions by the ACOP solver.

In Case I, the weights wC and wP are both set to 0.5,
whereas wE is set to 0, denoting a profit-driven CP. The
requested availability for service s1 is 0.8 and there are
no (anti-)affinity rules in place. According to the output
of the ACOP, the solution distributes the instances of
two services on 19 hosts (host j16 remains unoccupied),
whereas the allocated capacity is compressed to the min-
imum allowed by the probabilistic constraint of Eq. 10,
with service s2 being fully allocated since φs2 = 1
(Table 3, Case I). Also, the host that remains unoccupied
belongs to subnet n2, which interconnects hosts of higher
cost compared to subnet n1.

For Case II, in which the requested availability for
service s1 is increased to 0.9, the allocation pattern now
includes turning on all hosts for hosting more elastic
capacity. Further increasing φs2 to 1 as in Case III, leads
to the acceptance of the maximum amount of require-
ments for service s1, with the extra capacity that could
not be locally allocated, being federated onto another CP
(Table 3, Cases II and III). It should be noted that similar
effect can be achieved by increasing the penalty weight
while the availability remains fixed. This means that the
CP wants to decrease the risk of paying penalties to the
clients, therefore more elastic capacity is offered.

Case IV, is similar to the previous one with the only
difference being that the two components of service s1
are now bound to each other with affinity on cloud
level, i.e. all their instances must reside in the same
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Table 3
Comparison of different cases

Case I II III IV V VI
Services s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

Components i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2 i1 i2
Involved network n1 n1 n2 n1,n2 n2 n2 n1 n1 n2 n2 n1 n1 - - n1 n1 n1 n2 n1 n2 n1 n1 n2 n1,n2

Allocated capacity 8 8 10 10 9 9 10 10 10 8 10 10 0 0 10 10 8 8 10 10 8 8 10 10
Federated capacity 0 0 0 0 0 0 0 0 2 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0
Unoccupied hosts j16 - - j11 − j20 - j10
Gain-Cost G − C 220-52 220-55 220-55 220-25 220-52.5 220-52.5
Eco-efficiency E 14 15 15 5 14.5 14.5

Expected penalty P 2 1 0 0 2 2

Cloud. Interestingly, the allocation pattern now involves
federating the entire capacity that was requested for s1
(Table 3, Case IV). This is due to the fact that under
deterministic admission, it is not possible to allocate s1
in the underlying cloud while allocating s2 at the same
time. Although part of s1 could be allocated locally, as
demonstrated in Case III, the existence of the affinity rule
forces the entire service to be federated. Case V shares
the same input as Case I except that anti-affinity is ap-
plied on network level for service s1, i.e., the components
that comprise this service must be allocated in different
subnets. Contrary to Case I whereby the deployment of
service s1 was contained within the same subnet, the
activation of the specific anti-affinity rule forces the two
components of service s1 to be allocated on different
subnets, even though the gain is decreased compared
to the one behind Case I.

Case VI is similar to Case I with the only difference
being that the weight related to the ecology factor wE
has increased from 0 to 1. Therefore, the eco-efficiency
of the available hosts is now considered in the optimiza-
tion process. Contrary to Case I, the optimal allocation
pattern now involves turning on more hosts in subnet
n2 instead of n1, and the overall eco-score of the alloca-
tion pattern is increased, whereas the gain is decreased
(Table 3, Case VI). This is due to the fact that the hosts
of subnet n2, although more expensive and equivalent
to the ones of n1 in terms of computing power, they are
characterized by a higher eco-efficiency score.

8 CONCLUSIONS

This paper proposed an approach to the problem of
optimum allocation of services on virtualized physical
resources, with the following key contributions.

Elasticity of resources. We focused on hosting elastic
services whose resource requirements may dynamically
grow and shrink, depending on the dynamically varying
number of users and patterns of requests. The presented
optimization model exploits statistical knowledge about
the elastic workload requirements of the services in order
to reduce the resources needed to maintain a given
quality of level of service. In doing so, it also accounts for
business level objectives such as cost and eco-efficiency.

Cloud federation. The presented approach allows for the
establishment of federations among Cloud providers by

considering the acceptance of a service with the possibil-
ity to outsource it (entirely or partially) to other Cloud
providers. The model acknowledges any extra federa-
tion costs, communication overheads and affinity/anti-
affinity rules and achieves to seamlessly handle feder-
ated resources similarly to local ones while maintaining
its optimization goals across the Cloud federation.

Given the high complexity of the existing methods for
solving the formulated MINLP non-convex problem, a
heuristic solver was proposed that exhibits reduced com-
putation times up to 3 orders of magnitude compared to
the exact solver, while achieving a high solution quality,
making the proposed method practical and suitable for
on-line resource allocation in federated Clouds.
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