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Abstract—In this paper, a mechanism is presented to deal
with priority inversion in real-time systems when multiple threads
of execution synchronize with each other by means of mutual
exclusion semaphores coupled with the programming abstraction
of condition variables. Traditional priority inheritance solutions
focus on addressing priority or deadline inversion as due to the
attempt to lock mutual exclusion semaphores, or deal exclusively
with specific interaction patterns such as client-server ones. The
mechanism proposed in this paper allows the programmer to
explicitly declare to the run-time environment what tasks are able
to perform a notify operation on a condition over which other
tasks may be suspended through a wait operation. This enables
developers of custom interaction models for real-time tasks to
exploit their knowledge of the application-specific interaction so
as to potentially reduce priority inversion. The paper discusses
issues in the realization of the technique, and its integration with
existing priority inheritance mechanisms on current operating
systems. Also, the paper briefly presents the prototyping of
the technique within the open-source RTSim real-time systems
simulator, which is used to highlight the potential advantages of
the exposed technique through a simple simulated scenario.

I. INTRODUCTION AND PROBLEM PRESENTATION

Priority inversion is a well-known problem in the literature

of real-time systems occurring every time a task execution is

delayed due to the interference of lower priority tasks. This

problem is well-known to happen whenever a higher-priority

task tries to acquire a lock on a mutual-exclusion semaphore

(shortly, a mutex) already locked by a lower-priority task.

Clearly, the lock owner task needs to release the lock before

the more urgent one can proceed and this delay is unavoidable.

However, if a third task with a middle priority between these

two is allowed to preempt the lower-priority task holding the

lock, then the release of the lock is delayed even further,

adding an unnecessary delay to the execution of the higher-

priority task, waiting for the lock to be released.

For example, Figure 1 shows a sequence in which three

tasks, A, B and C are scheduled on the same processor by

using a fixed-priority scheduler, and A and C synchronize on

a mutex M for the access to some common data structure.

Task C runs while no other higher-priority task is ready to

run. Then, it locks the mutex (operation L(M) in the picture)

but, before being able to release it (operation U(M) in the

picture), it is preempted by the higher-priority task A that just

woke up. Task A executes for a while, then it tries to lock the

same mutex already locked by C, thus it suspends allowing

C to continue execution. Unfortunately, C cannot execute for

much time, because the middle-priority task B wakes up at

this point, preempting C as due to its higher-priority. Even

though B has a higher-priority than C, we know that C holds

Figure 1. Sample priority inversion scenario. Task A has the highest priority,
task C the lowest, and task B has a middle priority between them.

a lock for which the highest-priority task A is waiting, thus B

should not be allowed to preempt C in such a case. Therefore,

the time for which B keeps executing, delaying the release of

the lock by C, constitutes an avoidable additional delay for

the task A.

This problem has been addressed in a number of ways in

the literature, for example by the well-known Basic Priority

Inheritance and Priority Ceiling mechanisms [1], [2]. The

related literature is discussed in Section II later.

A mutex is commonly used for synchronization of tasks

in conjunction with the condition variables programming

abstraction, a mechanism that allows a task to suspend its

execution waiting for a condition to be satisfied on certain

variables. The typical example is the one of a reader from

a queue of messages waiting for someone to write into

the queue when it is empty. When the reader tries to read

an element from the queue but finds it empty, it suspends

itself till the number of elements in the queue becomes

greater than zero (as a consequence of a writer task pushing

one element). In such a case, the reader typically blocks

on a condition variable with an operation that atomically

suspends the task and releases the mutex (e.g., by using

the POSIX [3], [4] pthread_cond_wait() call) used for

critical sections operating on the queue. The writer, on the

other hand, after insertion of an element in the queue, notifies

possible readers through a notify operation (e.g., the POSIX

pthread_cond_notify() call).

In such cases, a form of unnecessary priority inversion

may still occur. Consider for example the scenario depicted

in Figure 2. Task A communicates with a set of other tasks

C, D and E via a message queue Q, through which it expects

to receive some message from them. Now, imagine that, for

whatever reason, in the set of tasks potentially producing

messages for A, there is also a task C with a priority lower than



the one of A. In the shown scenario, A tries to read atomically

from the queue (operation R(Q) in the picture), thus it locks

the queue mutex, but releases it immediately after detecting

that the queue is empty, blocking on a condition variable. Task

C then executes, but, before it finishes its computations for

writing into the message queue Q, it gets preempted by a third

unrelated task B with a priority level higher than B but lower

than A. The time for which B runs constitutes an unnecessary

delay for the execution of the higher-priority task A, which is

waiting for B to write something into the shared queue.

With the Priority Inheritance protocol, whenever a task

blocks trying to acquire a lock on a mutex that is already

locked by another task, the former task can temporarily donate

its priority to the latter task, in order to let it progress

quicker (avoiding unneeded preemptions) towards releasing

the lock. However, for the scenario depicted in Figure 2,

even if concurrent access to the queue Q is protected by a

mutex exhibiting Priority Inheritance, the mechanism cannot

help. Indeed, in this case Task C is not holding the lock of

the Q mutex while it is progressing towards completing the

computations that will lead to the production of a data item

to be pushed into the message queue Q. Only as part of the

atomic push and pop operations into and from the queue, does

a task acquire the mutex lock protecting access to the queue.

Therefore, Priority Inversion can merely fire in the short time

instants of execution of the atomic operations, but not during

the generally longer execution of the tasks.

Abstracting away from the specific example of shared

message queues, generally speaking, consider a set of real-time

tasks synchronizing through the use of mutex and condition

variables. Then, if a task that needs to wait for a condition to

become true may be unnecessarily delayed by lower-priority

tasks, then a form of priority inversion can occur. Indeed, if the

task(s) responsible for letting the mentioned condition become

true run(s) at a lower-priority in the system, and a third task

with a middle priority level wakes up, said third task may

preempt the execution of those lower-priority tasks, thus de-

laying the achievement of the condition for which the higher-

priority task is waiting. In this case, the traditional mechanism

of Basic Priority Inheritance cannot help, because the higher-

priority task waiting for the condition to become true drops

the mutex lock before suspending through a wait operation on

the condition variable, and the lower-priority task(s) that need

to progress in their computations so as to perform the notify

operation on the condition variable do not hold any mutex

lock while they are computing. Furthermore, the run-time

has generally no information about the (application-specific)

interaction among the tasks, so it cannot infer automatically

the needed task dependency information.

In some cases, real-time tasks might interact through higher-

level mechanisms that allow the run-time to actually know,

when a task suspends, which other tasks may actually cause

the resume of the suspended task. For example, this is the

case of the client-server interaction model of the Ada language

run-time, in which a client task invokes explicitly an Entry

of a server task, i.e., it pushes an element into the server

Figure 2. Priority inversion scenario with task A receiving data from a lower-
priority task C through a shared message-queue Q realized with a mutex and
a condition variable. Task B has middle-priority between A and C.

input queue and suspends till it receives a response. In such

a case, the run-time knows which particular server has to

perform work on behalf of which client(s), so it can correctly

apply Priority Inheritance, as shown in the seminal work on

the topic by Sha et al. [5]. However, in the general case

of tasks interacting by application-specific synchronization

protocols realized through mutex and condition variables, such

information is not readily available to the run-time.

A. Paper contribution

In this paper, a mechanism is proposed to let the run-

time be aware of the possible dependencies among tasks

within a real-time system, expanding the functionality of the

programming abstraction of condition variables. With the new

mechanism, called PI-CV, the programmer may declare what

are the tasks that may help a condition become true, over

which other tasks may be waiting. Exploiting such dependency

information, the run-time can trigger the necessary priority

inheritance that is needed to avoid priority inversion. PI-CV

alleviates the problem of priority inversion in cases in which

developers code into the system custom, application-specific

communication and synchronization logic through mutex and

condition variables.

There are various scenarios in which the introduced mech-

anism may be useful and indeed improve responsiveness of

real-time software components. For example, in the literature

of real-time systems, it is very common to see real-time

applications modeled as Directed Acyclic Graphs (DAGs) of

computations which are triggered periodically or as a result of

external events. Each node in the DAG can start its computa-

tions once its inputs are available (see Figure 3), which in turn

are produced as output of the computations of other nodes.

The mechanism is particularly useful in contexts in which

producers and consumers of data share common data structures

in shared memory (serializing the operations on it by means of

semaphores and synchronizing among each other by means of

condition variables), but at the same time they possess different



priority or criticality. This situation is very common in real-

time systems. For example, we can easily find co-existence

of both the main real-time code, characterized by stringent

timing constraints, and other side software components that

are needed for monitoring or configuration purposes. Often

it happens that some (often bidirectional) information flow is

needed between these two worlds (e.g., the monitoring code

needs to retrieve information about the status of the real-

time code, and the real-time code needs to reconfigure itself

according to the configuration passed by reconfiguration code).

II. RELATED WORK

The literature on the management of shared resources for

real-time systems is huge. In this section, the main works

related to the problem of priority inversion are shortly recalled.

During the International Workshop on Real-Time Ada Is-

sues, back in 1987, Cornhill and Sha reported [6] various

limitations of the Ada language when dealing with priority-

based real-time systems. Specifically, a high-priority task

could be delayed indefinitely by lower priority tasks under

certain conditions. Shortly afterward, the same authors formal-

ized [7] what are the correct interactions between client and

server tasks in form of assertions on the program execution.

The Ada run-time was not respecting those assertions, thus

allowing tasks to undergo unnecessary priority inversion. In

the same work, Priority Inheritance was informally introduced

as a general mechanism for bounding priority inversion. Later,

Sha et al. [2], [1] described better their idea formalizing

the two well-known Basic Priority Inheritance (BPI) and

Priority Ceiling (PCP) protocols. While BPI allows a task

to be blocked multiple times by lower priority tasks, with

PCP a task can be blocked at most once by lower-priority

tasks, so priority inversion is bounded by the execution time

of the longest critical-section of lower-priority tasks; also,

PCP prevents deadlock. A possible realization of PCP for

the Ada language has been described by Goodenough and

Sha [8], and by Borger and Rajkumar [9]. Also, Locke and

Goodenough discussed [10] some practical issues in applying

PCP to concrete real-time systems.

Various extensions to PCP have been proposed, for ex-

ample to deal with reader-writer locks [11], multi-processor

systems [12], [13], [14] and dynamically recomputed priority

ceilings [15]. Furthermore, Baker introduced [16] Stack Re-

source Policy (SRP), extending PCP so as to handle multi-

unit resources, dynamic priority schemes (e.g., EDF), and

task groups sharing a single stack (“featherweight” processes),

treated on its own as a resource with a zero ceiling. Also,

Gai et al. investigated [17] on minimizing memory utiliza-

tion when sharing resources in multiprocessor systems. More

recently, Lakshmanan et al. [18] further extended PCP for

multi-processors grouping tasks that access a common shared

resource and co-locating them on the same processor.

Schmidt et al. investigated [19] on various priority inversion

issues in CORBA middleware, and proposed an architecture

(TAO) not suffering of such problem. Priority inversion has

also been considered by Di Natale et al. in a proposal [20]

for schedulability analysis of real-time distributed applica-

tions, where, despite the use of PCP for scheduling tasks on

the CPUs, non-preemptability of packet transmissions causes

unavoidable priority inversion when a higher-priority packet

reaches the transmission queue while a low-priority packet is

being transmitted.

When scheduling under the Constant Bandwidth Server

(CBS) [21], Lamastra et al. proposed [22], [23] the BandWidth

Inheritance (BWI) protocol, allowing a task owning a lock

on a mutex not only to inherit the (dynamic) priority of the

highest priority waiting task (if higher than its own), but

also to account for its execution within the reservation of

the task whose priority is being inherited. This allows to

keep the temporal isolation property ensured by the CBS,

in the sense that non-interacting task groups cannot interfere

on each other’s ability to meet their timing constraints. Later,

Faggioli et al. [24] discussed various issues and optimizations

in the implementation of the protocol in the Linux kernel,

and specifically as an add-on to the AQuoSA scheduler [25].

An extension of BWI to multi-processor systems has been

proposed again by Faggioli et al. [26], where the implemen-

tation of the technique [27] was prototyped this time on the

LITMUS-RT [28] real-time test-bed.

Block et al. proposed FMLP [29], a resource locking

protocol for multi-processor systems allowing for unrestricted

critical-section nesting and efficient handling of the common

case of short non-nested accesses.

Guan et al. dealt [30] with real-time task sets where inter-

actions among tasks are only known at run-time depending on

which particular branches are actually executed.

Many other works exist in the literature [31], [32], [33],

[34], [35], [36], [37] on variants of the above resource-sharing

protocols and their analysis. An overview of them can be found

in [27]. Recently, techniques to mitigate priority inversion have

also been applied in the context of scheduling virtual machines

communicating with each other [38]. A very interesting recent

work by Abeni and Manica [39] adapts BWI to trigger

priority inheritance on client-server interactions, and presents

a schedulability analysis for that particular type of scenario.

The mechanism being presented in this paper is more generic

as it can be used with custom inter-thread communications.

Though, the analysis presented by Abeni may constitute a

valuable starting point for the analysis of the generic scenarios

addressed by the present paper.

The above reviewed literature on resource sharing in real-

time systems focuses essentially on dealing with priority

inversion (and applying various types of priority inheritance

mechanisms) in two main scenarios: 1) tasks interacting by the

use of shared memory and critical sections, serialized through

mutexes; 2) tasks interacting in a client-server fashion, where

the server task executes operations on behalf of various clients.

In this paper, a general priority inheritance mechanism is

presented, useful when tasks interact by using condition vari-

ables associated with mutexes. These are generally used in the

implementation of custom shared data types supporting custom

communication and synchronization protocols in concurrent



systems. In such a case, when a task, after entering a critical

section, suspends itself through a wait operation on a condition

variable, it also releases the mutex associated with the critical

section. At this point, some other task running in the system

may be the one responsible for the notify operation on the

same condition variable, waking up the task(s) suspended on

it. However, without further information, the run-time cannot

generally know which task(s), among the currently ready-

to-run ones, may perform such a notify operation. If the

interacting tasks have different priorities, then the system may

undergo avoidable priority inversion. With the mechanism

proposed in this paper, the run-time is informed by the tasks

about which other tasks may possibly help and accelerate the

wake-up of a task suspended on a condition variable, thus

enabling the avoidance of this kind of priority inversion. The

mechanism can also be composed with existing priority inher-

itance schemes for lock-based interactions. Furthermore, it can

also be used for realizing priority inheritance in client-server

interactions, in Ada-rendezvous style. However, it can also be

used in arbitrary, application-specific interactions programmed

through mutual exclusion semaphores and condition variables.

Note that Hart and Guniguntala [40] made changes to the

GNU libc pthreads library and kernel in order to support

efficient wake-up of multiple tasks waiting on a condition

variable (as due to a pthreads_cond_broadcast())

used in connection with an rt-mutex, so as to avoid the

“thundering herd” effect, and guaranteeing the correct wake-

up order (considering also priority inheritance). Such changes

relate to the support for priority inheritance in rt-mutexes

and they are not to be confused with the mechanism being

proposed in this paper.

To the best of my knowledge, there are no alternatives

for dealing with the specific type of problem of priority

inversion as described above, in presence of condition vari-

ables. Commonly known alternatives to using semaphores and

locks at all, include recurring to lock-free data structures, and

solutions based on the Transactional Memory programming

paradigm [41]. Lock-free programming is well-known to be

more complex and difficult to master, than traditional lock-

based programming. The advantage of the presented technique

is that it allows applications developers to keep designing

code using traditional synchronization primitives, i.e., mutual

exclusion semaphores and condition variables, but they can

improve the responsiveness of their applications with the

very little additional effort to sort out which are the helper

tasks for the condition variables they use (or, sometimes,

the helper tasks may be automatically identified in proper

libraries, see Section IV-B later). On the other hand, the

Transactional Memory programming paradigm is particularly

useful in presence of non-blocking operations on shared data

structures, i.e., operations that would not lead to the suspension

of the calling task in order to wait for a condition to become

true, as it happens with condition variables, thus it does not

constitute an alternative to the presented technique. A thorough

and detailed comparison among these communication and

synchronization techniques is outside the scope of this paper.

III. PRIORITY INHERITANCE ON CONDITION VARIABLES

In what follows, without loss of generality, the term task

will be used to refer to a single thread of execution in a

computing system, being it either a thread in a multi-threaded

application, or a process. Also, without loss of generality, the

term priority will be used to refer to the right of execution

(or “urgency” level) of a task as compared to other tasks

from the CPU(s) scheduler viewpoint. This includes both the

priority of tasks whenever they are scheduled according to a

priority-based discipline and their deadline whenever they are

scheduled according to a deadline-based discipline (and their

time-stamp whenever they are scheduled according to other

policies based for example on virtual times, such as the Linux

CFS [42]). However, the described technique is not specifically

tied to these scheduling disciplines and it can be applied in

presence of other schedulers as well. Furthermore, it should be

clarified that this paper deals with how to dynamically change

the priorities of tasks within a system, which is orthogonal

with respect to how said tasks are scheduled on the available

processors. Specifically, analyzing the consequences of the

introduced technique on schedulability of real-time systems

in presence of multi-core and/or multi-processor systems is

out of the scope of this paper.

The mechanism of priority inheritance on condition vari-

ables (PI-CV) proposed in this paper works as follows:

• it is possible (but not mandatory) to programmatically

associate a condition variable with the set of tasks able to

speed-up the verification of the condition; these tasks will

be called helper tasks; the set of helper tasks associated

with a condition variable can be fixed throughout the life-

time of the condition variable, or be dynamically changed

at run-time, according to the application needs;

• whenever a higher-priority task executes a wait operation

on a condition variable, having a non-null set of helper

tasks, it temporarily donates its priority to all the lower-

priority helper tasks, so as to “speed-up” the verification

of the condition associated with the condition variable;

• as soon as the condition variable is notified, the dynam-

ically inherited priority is revoked, restoring the original

priority of the helper tasks;

• the mechanism can be applied transitively, if one or more

helper tasks suspends on other condition variables;

• the mechanism can be nicely integrated with traditional

(Basic) Priority Inheritance, resulting in priority being

(transitively) inherited from a higher priority task to

a lower priority one either because the former waits

to acquire a lock held by the latter, or because the

former suspended through a wait operation on a condition

variable for which the latter is a helper task.

Whenever a higher-priority task is suspended waiting for

some output produced by lower-priority tasks, PI-CV allows

the lower-priority tasks to temporarily inherit the right of

execution of the higher-priority task with respect to the tasks

scheduler. In order for the mechanism to work, it is necessary

to introduce a few interface modifications to the classical



Figure 3. General interaction scenario where priority inheritance on condition
variables may be applied transitively. Task F is waiting on a condition variable
having tasks D and G registered as helpers.

condition variables mechanism as known in the literature, so

that the run-time environment (e.g., the Operating System)

knows which lower-priority tasks should inherit the priority

of a higher-priority task suspending its execution waiting for

a condition to become true. The interface may allow the

mechanism of priority inheritance on condition variables to

be enabled selectively on a case-by-case basis (per-condition

variable and per-semaphore), depending on the application and

system requirements (see below).

Priority inheritance may be applied transitively, when

needed. For example, if Task A blocks on a condition variable

donating temporarily its priority to Task B, and Task B in turn

blocks on another condition variable donating temporarily its

priority to Task C, then Task C should inherit the highest

priority among the one associated with all the 3 tasks. Also,

priority inheritance for condition variables can be integrated

with traditional priority inheritance (or deadline inheritance)

as available on current Operating Systems, letting the priority

transitively propagate either due to an attempt of locking a

locked mutex, or to a suspension on a condition variable with

associated one or more helper tasks.

In other words, consider a blocking chain of tasks

(τ1, τ2, . . . , τn) where each task τi (1 ≤ i ≤ n−1) suspended

on the next one τi+1 either trying to acquire a lock (enhanced

with priority or deadline inheritance) already held by τi+1,

or waiting on a condition variable (enhanced with PI-CV as

described in this document) where τi+1 is registered among

the helper tasks. All the tasks in such a blocking chain are

suspended, except the last one (that is eligible to run). This

last task inherits the priority of any of the tasks in any blocking

chain terminating on it, i.e., any task in the direct acyclic graph

of blocking chains that terminate on it. For example, consider

the scenario shown in Figure 3, where each arrow from a task

to another means that the former is suspended on the latter due

to either a blocking lock operation or a wait on a condition

variable where the latter task is one of the helpers. Task A

inherits the highest priority among tasks B, C, D, E, F, while

G inherits the priority of F, if all of the suspensions happen

through mutex semaphores enriched with priority inheritance

or condition variables enriched with PI-CV. In the depicted

scenario, note that F is waiting on a condition variable where

both D and G are registered as helpers. This allows both of

them to inherit the priority of F, until the condition is notified.

A. Reservation-based scheduling

Also, whenever a task is associated by the scheduler with a

maximum time for which it may execute within certain time

intervals, as in reservation-based scheduling [43], [44] (e.g.,

the POSIX Sporadic Server [3] or the CBS), the inheritance

mechanism may behave in such a way that the helper task

executing as a result of its priority having been boosted by

the described priority inheritance mechanism, will account its

execution towards the execution-time constraints of the task

from which the priority was inherited (i.e., the budget of its

server). For example, referring to the Bandwidth Inheritance

(BWI) protocol [22], it is straightforward to think of the

corresponding extension. In a BWI-CV protocol, whenever a

task inherits the priority of a higher-priority task, the ready-

to-run tasks at the end of the blocking chains (involving both

attempts to acquire locks and wait operations on condition

variables with associated other helper tasks) also execute in the

server of the highest-priority task that is donating its priority to

them, depleting its corresponding budget. Namely, the server

to consider for budget accounting purposes should be the one

associated with the highest-priority task, among the ones in

the Direct Acyclic Graph (DAG) of all the blocking chains

terminating on the said ready-to-run task.

B. Multi-processor systems

Note that PI-CV can be applied to single-processor as well

as to multi-processor and multi-core systems. PI-CV merely

allows the programmer to declare which are the helper tasks

for each given condition variable at each time throughout the

program life-time, and the run-time applies priority inheritance

as described above. The specifics about how exactly tasks are

scheduled in a multi-processor environment are outside the

scope of this paper.

C. Schedulability analysis

PI-CV is presented in this paper without any particular

associated schedulability analysis technique nor formal proof.

As the mechanism allows for reducing priority inversion, it

is expectable that the worst-case and/or average-case interfer-

ence terms in schedulability analysis calculations, as coming

out considering the specifics of the scheduling policy being

employed on a system, have a shorter duration. This is shown

by simulation in a simple scenario later in Section VI.

Similarly to the traditional Priority Inheritance mechanism

available on current Operating Systems, PI-CV may reduce un-

needed priority inversion in certain scenarios, leading to an im-

proved responsiveness of the highest priority activities within a

system. Also, when combined with resource reservations along

the lines of BWI [22], [23], a BWI-CV mechanism should

be capable of guaranteeing temporal isolation among non-

interacting task groups. However, a theoretical analysis would

be useful to provide a strong assessment on the (worst-case)

responsiveness of the various real-time activities, including

understanding whether it will be possible to meet all deadlines

for higher-priority tasks that may benefit from PI-CV, as well

as for lower-priority ones that may worsen their behavior, in

presence of interactions based on condition variables. Further

development of these concepts is left as future work.



IV. IMPLEMENTATION NOTES

From an implementation standpoint, the proposed mecha-

nism may be made available to applications via a specialized

library call that can be used by a task to declare which

other tasks are the potential helpers towards the verification

of the condition associated with a condition variable. For

example, in an implementation leveraging the pthreads library

implementation, this can be realized through the following C

library calls:

i n t p t h r e a d c o n d h e l p e r s a d d
( p t h r e a d c o n d t ∗cond , p t h r e a d t ∗ h e l p e r ) ;

i n t p t h r e a d c o n d h e l p e r s d e l
( p t h r e a d c o n d t ∗cond , p t h r e a d t ∗ h e l p e r ) ;

These two functions add or delete the helper

thread to the pool of threads (empty after a

pthread_cond_init() call) that can potentially

inherit the priority of any thread waiting on the condition

variable cond by means of a pthread_cond_wait()

or pthread_cond_timedwait() call. The condition

variable may be associated with a list of helper threads, and

a kernel-level modification needs to ensure that the highest

priority among the ones of all the waiters blocked on the

condition variable is dynamically inherited by the registered

helper thread(s), whenever higher than their own priority (and

also that this inheritance is transitively propagated across both

condition variables and traditional mutex supporting Priority

Inheritance). Whenever the pthread_cond_notify()

or pthread_cond_broadcast() function is called, the

correspondingly woken-up thread(s) will revoke donation of

their own priority.

A. Message queues

In a possible usage scenario, the proposed mechanism

can be associated with a message queue in shared memory

protected by a mutex for guaranteeing atomic operations on

the queue, and a condition variable used to wait for the

queue to become non-empty (if the queue has a predeter-

mined maximum size, then another condition variable may

similarly be used to wait for the queue to become non-

full). In such a scenario, whenever initializing the condition

variable, a writer task will declare itself as a writer associating

its pthread_t to the condition variable, i.e., declaring

explicitly that its execution will lead to the verification of

the condition associated to that condition variable (non-empty

queue). This can be done with a call to the above introduced

pthread_cond_helpers_add() function after the con-

dition variable initialization. Therefore, whenever a reader task

will suspend its execution via a pthread_cond_wait()

call on the condition variable, the associated writer(s), if

there are any of them ready for execution, will dynamically

inherit the priority of the suspended reader if higher than their

own priority. This will inhibit third unrelated middle-priority

tasks to preempt the low-priority writers, protecting from the

mentioned Priority Inversion problem.

In a possible scenario in which there is a pipeline of multiple

tasks using the just mentioned PI-CV-enhanced message queue

Figure 4. Pipeline interaction model.

implementation, it is possible to see the transitive inheritance

propagation. Consider, for example, the scenario depicted in

Figure 4, where A receives data from B through a message

queue Q2, and B receives data from C through another

message queue Q1. In such a case, when A attempts a read

from Q1 but it suspends because it finds the queue empty, its

priority may be donated to B. However, if B suspends on its

own because it attempts a read from Q2 but it finds it empty,

then C inherits not only the priority of B, but also the one

of A (i.e., C runs with the highest priority – be it priority or

deadline or other type of time-stamp – among A, B and C).

B. Client-server interactions

The described PI-CV mechanism may be leveraged to

realize client-server interactions with the correct management

of priorities whenever a server executes on behalf of a client

with possibly other clients waiting for its service(s). In a

possible implementation, clients and servers interact through

message queues, synchronized through mutexes and condition

variables. A server accepts requests from clients through a

single server request queue. Each client may receive the

desired reply from the server through a dedicated client-server

reply queue. Each client may explicitly declare the server as

the helper task for the condition variable associated to the

client-server reply queue being non-empty. After posting a new

request in the server request queue, a client suspends on the

condition variable of its dedicated client-server reply queue.

This allows the OS to automatically let the server inherit the

maximum priority among (its own priority and) the priorities

of any client waiting for its service(s).

Also, if the mutex protecting the message queues are all

enhanced with traditional priority inheritance (e.g., the POSIX

PTHREAD_PRIO_INHERIT attribute), the two mechanisms

compose with each other towards reducing priority inversion.

Note that, in such scenario, it would be easy to provide a

proper programming abstraction for client-server messaging

that declares implicitly which are the helper tasks for the

condition variables of the dedicated reply message queues.

When dealing with real-time scheduling and the correct set-up

of scheduling parameters, it is often convenient for developers

if the Operating System or middleware services exhibit self-

tuning capabilities [45], [46].

Effectiveness of PI-CV in the context of client-server in-

teractions is further explored in Section VI, reporting a few

simulation results. These have been obtained by means of the

implementation of PI-CV described in what follows.



V. SIMULATION

The described PI-CV mechanism has been prototyped

within the open-source RTSim real-time systems simulator1.

RTSim [47] allows for simulation of a multi-processor system

running a set of real-time tasks. Various scheduling mech-

anisms are available within the framework, including fixed

priority, deadline-based scheduling and resource-reservation

mechanisms [43], [44] (e.g., the POSIX Sporadic Server [3]

or the Constant Bandwidth Server [21]). The simulated real-

time tasks can be programmed with a simple language that

includes, among others, instructions for simulating:

• computations for a fixed amount of time units (fixed()

instruction), or for a probabilistically distributed time;

• basic locking instructions (lock(M) and

unlock(M)) allowing for simulations of critical

sections protected by a mutex M, corresponding

to the POSIX pthread_mutex_lock() and

pthread_mutex_unlock() functions.

The simulator also includes simulation of a few protocols for

shared resources, which can be associated with the locking

primitives, such as priority ceiling, traditional priority inheri-

tance on mutexes, BWI [22] and others.

RTSim has been extended with the following modifications:

• condition variables have been supported through a

new CondVar object type that can be referenced

in two new dedicated task statements: wait(M,CV)

and signal(M,CV), which act on the mutex

M and CondVar CV, with semantics correspond-

ing to the POSIX pthread_cond_wait() and

pthread_cond_signal() function calls, respec-

tively (note that, when a task is suspended via wait(),

the mutex M is released, and that signal() wakes up

only the highest-priority task among the waiters);

• a new Counter object type has been added, with the

associated instructions inc(), dec() and set(),

with obvious meaning;

• as RTSim lacks of conditional statements, a new

waitc(M,CV,SZ) instruction has been added which

suspends the calling task performing a wait() only if

the specified counter is zero;

• the support for priority inheritance has been completed

for the case of arbitrarily nested critical sections;

• the PI-CV mechanism as described above has been inte-

grated, in a way that also integrates transitive inheritance

among mutex lock and condition variable wait primitives.

Helper tasks for condition variables must be set-up statically

before the simulation begins. Furthermore, the PI-CV and

traditional priority inheritance mechanisms can be individually

enabled or disabled for the whole simulation.

With such elements, it is possible to simulate for example

the synchronization among two tasks due to one of them

writing onto a shared queue and the other one waiting for

reception of a message, using a counter SZ just to keep track

1More information is available at: http://rtsim.sourceforge.net.

f i x e d(6);
l oc k(M);

f i x e d(2);
i n c(SZ);

unlock(M);
s i g n a l(M,CV);

f i x e d(2);
l oc k(M);

f i x e d(1);

wai tc(M,CV,SZ);
f i x e d(2);

dec(SZ);
unlock(M);

f i x e d(3);

Figure 5. Task code for send (left) and receive (right) via a shared queue.

of the queue size. To simulate a periodic or sporadic writer

that computes for 6 time units, then it pushes a message onto

a queue with an atomic operation lasting for 2 time units,

then it waits for the next cycle, one would use the code in

Figure 5 left. To simulate a reader/waiter that computes for 2

time units, then it waits for a message to be made available

onto the queue, where checking the message availability takes

1 time unit, and extracting it from the queue takes 2 time

units, then it completes the cycle with further 3 time units of

computation, one would use the code in Figure 5 right.

The above scheme can be used, for example, to reproduce

the scenario in Figure 2.

Additional instructions have been introduced to deal with

more dynamic behaviors, as required in a real client-server

interaction, in which the server cannot know in advance what

client it will receive a request from, thus it cannot know in

advance which client queue it will have to push the answer

into. To this purpose, the following further modifications have

been realized in RTSim:

• a new Queue type has been added, abstracting a

message queue functionality, in which no messages

are actually exchanged by tasks, but RTSim remem-

bers how many messages have been posted by means

of the usual push(Q) and pop(Q) operations; also,

the further operations pushptr(Q,RQ,RCV,RM) and

popptr(Q,P_RQ,P_RCV,P_RM) are used for more

complex client-server interactions, where a client can post

into the queue information on which queue the reply

should be directed to (see code below); the Queue type

is purposely non-synchronized, so as to leave freedom

to specify the synchronization by composing the other

primitives as needed;

• a new waitq(M,CV,Q) operation waits for the spec-

ified queue to be non-empty, performing a wait()

operation on the specified CV and releasing the specified

mutex, if needed;

• a new Pointer type has been added, capable of pointing

to mutex, condition variable and queue objects; whenever

RTSim expects the name of any of said objects, the

name of a pointer pointing to an object of the same type

can be used instead, in dereferenced notation (using a

“*” prefix); namely, the operation lock(*pM) unlocks

the mutex that is referenced by the pointer pM; this is

useful in combination with the popptr and pushptr

functions, as clarified in the example below.

As in the original RTSim code base, there are no instructions to

declare mutex, condition variable, queue and pointer objects in



f i x e d(1);

l ock(ServerM);

f i x e d(2);

pushptr(ServerQ,ClientQ,

ClientCV,ClientM);

unlock(ServerM);

s i g n a l(ServerM,ServerCV);

f i x e d(1);

l ock(ClientQ);

f i x e d(2);

waitq(ClientCV,ClientM,

ClientQ);

pop(ClientQ);

unlock(ClientM);

f i x e d(1);

l ock(ServerM);

f i x e d(2);

waitq(ServerM,ServerCV,

ServerQ);

popptr(ServerQ,pClientQ,

pClientCV,pClientM);

unlock(ServerM);

f i x e d(5);

f i x e d(1);

l ock(*pClientM);

f i x e d(2);

push(*pClientQ);

unlock(*pClientM);

s i g n a l(*pClientM,*pClientCV);

Figure 6. Task code for client (left) and server (right) using PI-CV.

the tasks code, but these have to be created by using the RTSim

API before adding code to the tasks. The above elements

can be used to code a client-server interaction, as shown in

Figure 6.

As it can be seen, the level of detail for the simulation

may be kept to a minimum, neglecting details related to the

functional aspects of the simulated tasks, but catching the main

behavioral aspects that may impact their response-times.

The presented modifications to the RTSim open-source

simulator have been submitted for clearance to be released

in public and be freely made available to other researchers.

However, at this time it is not clear whether this will be

possible or not.

VI. SIMULATED RESULTS

Using the implementation of PI-CV within RTSim as de-

scribed in the previous section, an evaluation has been done

by simulating a simple scenario with 3 client tasks using the

same server task and running on a single-processor platform.

For example, the server task might be representative of some

OS service available through proper RPC calls, realized in

terms of shared in-memory data structures protected by syn-

chronizing access through mutexes and condition variables. In

the simulated scenario, each client task is periodic, it spends a

fixed time processing (see Table I), then it invokes the server

by pushing a message onto the server receive queue, then

it waits for a response to be placed by the server onto the

client own receive queue. The server, on the other hand, is

not periodic. It has been given the lowest possible priority

within the system. It waits for an incoming message on its

receive queue, then it computes for a fixed amount of time,

then it pushes a message back onto the receive queue of

the caller task, and it repeats forever. Task periods have

been generated randomly. The overall experiment duration

has been set to 200000 simulated time units, amounting to

roughly 300 activations for each task. The overall set of used

parameters for the 3 clients is summarized in Table I. The

parameters have been roughly chosen to create a scenario

in which the advantages of the proposed technique could be

easily highlighted. Other overheads such as context switch

or scheduling overheads have not been simulated. A more

realistic simulation, including a careful tuning of the overheads

Parameter Client1 Client2 Client3

Task period 676 683 687

Overhead of lock()/unlock() 1 1 1

Overhead of wait()/signal() 2 2 2

Overhead of push()/pop() 2 2 2

Overhead of pushptr()/popptr() 2 2 2

Job own computation 50 50 50

Server call computation 20

Experiment duration 200000

Table I
TASK PARAMETERS FOR THE SIMULATED SCENARIO (ALL VALUES ARE

EXPRESSED IN THE SIMULATED TIME UNITS).

and parameters around a real platform and OS and possibly a

real application, is surely valuable future work to be done.

Client-server interactions have been simulated in RTSim fol-

lowing the code structure exemplified in the previous section

making use of the Queue type and of the Pointer type

for the server. Two simulations have been done, one with

only the traditional priority inheritance on all mutexes, and

the other one with also the PI-CV mechanism on all condition

variables (the two mechanisms acted in an integrated fashion

as explained above).

Figure 7.(a) reports the obtained Cumulative Distribution

Functions (CDFs) of the response time (i.e., the difference

between the job finishing and arrival times) of the highest

and lowest priority clients for the experiment, in the two

cases of with and without PI-CV. It is clearly visible that,

when using PI-CV, the highest priority client greatly benefits

of PI-CV, reducing its average and maximum response-times,

at the expense of the lowest priority client for which both

metrics become worse, as expected. As a result, PI-CV allows

for avoiding unnecessary priority inversion. For completeness,

Figures (b) and (c) report the CDFs for all the 3 clients in the

two cases.

Figure 8 reports the cumulative simulated time units for

which each task was assigned each priority value. Note that,

in RTSim, the priority with numeric value 1 corresponds to

the highest priority in the system. As it can be seen, the server

task is assigned, for a significant part of the simulation, one

of the clients priority levels, while it is serving requests on

their behalf. Also, Client3 is assigned for a small time (note

the logarithmic scale on the vertical axis) the boosted priority

levels assigned to Client1 and Client2. This may be due to

two factors. First, Client3 competes on the mutex protecting

access to the server queue, thus whenever Client1 or Client2

wait for it to release the mutex before posting their message,

the Client3 priority is correspondingly boosted to the level

of Client1 or Client2 by the traditional priority inheritance

mechanism. Second, whenever Client1 or Client2 submit a

request to the server and start waiting for the response, but

the server is still serving Client3, and no mutex is being held

by any task, PI-CV boosts the priority of Client3 to the level

of Client1 or Client2, depending on who is actually waiting

on the condition variable.

It has to be noted that the effectiveness of PI-CV and

its quantitative impact on the tasks performance depends

essentially on how much time a task spends wait()-ing on a



 0

 0.2

 0.4

 0.6

 0.8

 1

 80  100  120  140  160  180  200  220  240  260  280  300

P
ro

b
a
b
ili

ty

Response Time (simulated time units)

Task1 PI-CV
Task1

Task3 PI-CV
Task3

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 80  100  120  140  160  180  200  220  240  260  280  300

P
ro

b
a
b
ili

ty

Response Time (simulated time units)

Task1
Task2
Task3

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 80  100  120  140  160  180  200  220  240  260  280  300

P
ro

b
a
b
ili

ty

Response Time (simulated time units)

Task1
Task2
Task3

(c)

Figure 7. Response time CDFs of the response time of: (a) the highest-
priority client (Task1) and the lowest-priority client (Task3) in the two cases
of with and without PI-CV; (b) the 3 clients when executing without PI-CV
and (c) with PI-CV.
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condition variable for which helper tasks are defined, i.e., how

much time is needed for the corresponding notify() to occur.

This time is of course very application-specific. Comparing

with traditional priority inheritance on mutex semaphores,

in that case the effectiveness of the mechanism depends on

how much time a task spends in a critical section with a

mutex locked, which is also very application-specific. Though,

the time spent with a mutex locked may be expected to be

lower than the one spent wait()-ing for a notify() by some

other task. Therefore, whenever it is possible to identify

dependency relationships among real-time tasks, the presented

PI-CV mechanism may be exploited to avoid situations of

priority inversion expected to be of longer durations.

VII. CONCLUSIONS

In this paper, a mechanism has been presented for enhancing

real-time systems with priority inheritance in presence of

mutual exclusion semaphores and condition variables. The

new mechanism, called PI-CV, alleviates the problem of

priority inversion in cases in which developers code into the

system custom, application-specific interaction and communi-

cation/synchronization logic by means of mutex and condition

variables. With PI-CV, the programmer may declare what are

the tasks that may help a condition to become true, over which

other tasks may be waiting. Exploiting such dependency infor-

mation, the run-time (Operating System) can correspondingly

trigger the needed priority inheritance among tasks, mixing

with traditional priority inheritance (e.g., as available through

the PTHREAD_PRIO_INHERIT attribute in POSIX).

Whether or not it is meaningful that a higher-priority task

suspends waiting for possible lower-priority tasks to provide

some output, is something belonging to the application logic,

and outside the scope of this paper. Whenever priorities of

tasks can be meaningfully fine-tuned ahead of time, PI-CV

might not be needed at all. However, PI-CV is applicable

and useful in all those situations in which a task might need

interactions with multiple tasks of different priorities (that

go beyond the simple synchronization by mutual exclusion

semaphores but need to recur to condition variables). This is a

situation that might occur frequently in the design of real-time

and embedded systems, for example for OS or middleware

services that are shared across all real-time tasks within the

system, as shown in the simulated scenario of Section VI.

Even though the proposed technique has been prototyped

within the RTSim open-source simulator for real-time sys-

tems, possible future work includes the implementation of the

proposed technique within a real OS (e.g., by extending the

pthreads library and kernel functionality on Linux and inte-

grating the technique with the SCHED DEADLINE deadline-

based scheduler [48]) showing its usefulness in concrete

application contexts. For example, the Jack low-latency audio

development framework allows for realizing arbitrary DAGs of

inter-connected components and filters, in the audio processing

pipeline. As the framework was already modified [49] for

using a deadline-based scheduler, it would be interesting, in a

multi-processor context, to leverage the PI-CV mechanism in

order to let all the resource reservations involved in the audio

processing pipeline automatically synchronize over (inherit)

the common deadline of delivery of the audio frames to the

speakers. Other directions for future work go of course along

the direction of extending existing schedulability analysis

techniques in presence of PI-CV. For example, the analysis

presented in [39] might be extended and generalized for such

purpose.
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