
Nip it in the Bud: Job Acceptance Multi-Server
Anna Friebe1, Tommaso Cucinotta2, Filip Marković3, Alessandro Vittorio Papadopoulos1, and Thomas Nolte1

1Mälardalen University (MDU), Sweden
2Scuola Superiore Sant’Anna, Italy

3University of Southampton, United Kingdom

Abstract—Computationally demanding tasks with highly vari-
able execution times may require parallel processing. Scheduling
such tasks with low deadline miss rates but without significant
overprovisioning is challenging. This issue arises in applications
like nonlinear optimization for Model Predictive Control (MPC).
The Constant Bandwidth Server (CBS) provides timing isolation,
supporting both hard and soft real-time tasks. However, schedul-
ing parallel, time-varying jobs across multiple CBS instances
requires static job-to-server assignments, which can lead to
resource underutilization due to queued jobs awaiting specific
servers. This paper introduces the Job Acceptance Multi-Server
(JAMS), a mechanism in which multiple CBS instances share a
common job queue, enabling flexible job dispatching for parallel
workloads. JAMS incorporates a job dismissal mechanism to ad-
dress overloads, ensuring that only jobs with guaranteed resource
availability are accepted. Each CBS instance checks if it can
complete a job by its deadline, given probabilistic knowledge on
its execution times, dismissing unfeasible jobs to avoid excessive
tardiness across queued tasks. Implemented in Linux, JAMS is
evaluated with computation times drawn from an MPC task and
synthetic datasets. The extensive experimental results we provide
demonstrate that JAMS effectively controls the deadline miss
rate, maintaining it below a specified design threshold.

Index Terms—probabilistic scheduling, job dismissal

I. INTRODUCTION

In real-time systems, computational workloads can often be
decomposed into smaller tasks that execute either in parallel
or sequentially. Certain computations require strict sequential
execution, but multiple such computations may be active con-
currently, operating on different data. For instance, in Model-
Predictive Control (MPC), an optimization problem is solved
to determine a state trajectory and control commands over a
defined horizon, with a time-varying convergence, particularly
in nonlinear systems. As shown in [1], such tasks for different
time windows can be processed in parallel on predicted states,
updating results when states become available. Methods based
on particle filters such as FastSLAM are often parallelized [2],
[3] and may use an adaptive number of particles, resulting
in varying computation times [4]. A state estimate can be
obtained from a smaller number of particles although it may
be less accurate [4]. Allocating computational resources to a
collective group of tasks with a unified objective rather than
to individual tasks enables efficient resource utilization..

The Constant Bandwidth Server (CBS) [5] provides timing
isolation and supports integration of both soft and hard
real-time tasks. In multicore systems, CBS instances may

This work has been funded through the Knowledge Foundation grants No.
20240011, 20170214, and 20230146.

be allowed to migrate across cores, although each instance’s
utilization is capped at 1 [6]. Thus, CBS alone is not sufficient
for resource assignment to a group of parallel tasks working
toward a combined outcome, i.e. a thread pool.

To address this limitation, we introduce the Job Acceptance
Multi-Server (JAMS), where multiple CBS instances share
a global job queue, and queued jobs are dispatched when a
server becomes available.

If a task in a server misbehaves and requires more
computation resources than assumed at design time, the
server guarantees that tasks outside the server still receive
the required resources. However, job tardiness within the
server may grow unboundedly, potentially disrupting the
system functionality even when other tasks have sufficient
computational resources. In such cases, JAMS utilizes a job
dismissal mechanism to prioritize jobs with a high likelihood
of meeting their deadlines, mitigating overload situations and
allowing for smoother system recovery.

Job dismissal, used in some schedulability and response
time analysis of real-time systems [7], [8], assumes that jobs
are dismissed upon deadline misses or at another specified
dismissal point, enhancing analytical tractability and mitigat-
ing adverse effects from misbehaving tasks or inaccuracies in
execution time estimates. For instance, if the analysis relies on
a Worst Case Execution Time (WCET) that was erroneously
estimated, dismissing a job once it consumed its erroneously
considered WCET at analysis and admission time, ensures
that the analysis still holds for the jobs that behave correctly.

Despite these advantages of job dismissals, many real-time
schedulers do not provide such a feature. One alternative is
to implement in-task job abortion [9], or through dedicated
programming abstractions, such as the deadline exception
introduced in [10]. While this is often a suitable alternative
that allows for tailor-made abortion points and can be
implemented in addition to the proposed JAMS mechanism,
it requires that the tasks are bug-free and non-compromised.
Tasks cannot consider the total load of the system in the
dismissal decision. Furthermore, dismissing a job at the time
when it is about to start execution, rather than at a dismissal
point during execution, frees resources for other jobs. To
address these challenges, JAMS ensures that jobs dispatched to
a server are guaranteed a certain amount of computation time
prior to their deadline, by dismissing tardy jobs if needed..

Contribution: The contribution of this paper is twofold:
1) The JAMS framework, which enables a group of

CBS servers to pick jobs from a global shared queue,

facilitating flexible dispatching of jobs with varying
computation times and a joint goal.

2) A job acceptance policy that dispatches jobs for
processing only if there are resources guaranteeing
a high probability for them to meet their deadlines,
dismissing jobs queued beyond acceptable queue times.

II. RELATED WORK

Task models for parallel workloads include the fork-join
model [11], where a main thread executes sequentially up
until a point where it forks into a number of threads that
execute a parallel part of the computation. This is followed by
a synchronization where the parallel threads are terminated
and the main thread continues. An extension is the parallel
synchronous task model [12], where parallel computational
segments may be consecutive, and two segments may have dif-
ferent number of threads. Lupu and Goossens [13] presented a
multi-thread periodic task model, where each task periodically
generates a number of subprograms (threads). Hard real-time
fixed-priority schedulability tests for constrained deadlines are
provided. In the parallel MPC example from [1], optimizations
start periodically, but they overlap, so there are no points
when threads simultaneously synchronize and join.

Another common parallel task model is the gang task model,
where a number of threads are required to run concurrently be-
cause they interact. Coscheduling of such processing working
sets was introduced by Ousterhout [14]. A one-gang-at-a-time
policy [15] has been proposed to reduce interference and turn
the multicore parallel scheduling into an equivalent of unipro-
cessor scheduling. Recently, soft real-time scheduling of gang
tasks has been considered [16], including presenting server-
based scheduling policies and schedulability tests. For the
tasks in this paper, we consider functionality that may be run
in parallel, but there is no interaction or need for coscheduling,
so the gang task model is unnecessarily restrictive.

Scheduling of a set of tasks with multiprocessor bandwidth
reservations has been implemented to support hierarchical
scheduling with bounded delay [17]. A similar approach
has been taken to support real-time containers [18]. Both
these approaches use control groups to separate task sets and
modify the Linux CBS implementation SCHED_DEADLINE to
schedule the root level of a hierarchical schedule, while the
lower level is scheduled with fixed priority. In JAMS, CBS is
used for the low-level scheduling.

For systems without job dismissal, it is clear that the average
requested computational resources must be lower than the
average provided resource for these systems to be stable [19].
In such a stable system, there exist points in time when the
job queue is empty [20]. In a system where jobs are discarded,
stability can be achieved without this requirement, but some of
the requested computational resources may be rejected due to
the discarding policy. Jobs may also be delayed or discarded
before they start due to a lack of resources, scheduling
priorities, and discarding policy. Chen et al. [21] compared
the effect on the deadline miss rate of varying the dismiss
point after the deadline for a uniprocessor system where

task computation times were independent discrete random
variables and the average resource demand was lower than the
supply. While not directly applicable to our multiprocessor
use case, potentially with overload and correlated computation
times, a later dismiss point resulted in a higher deadline miss
rate, but the rate converged. Manolache et al. [8] analyzed
task graphs with stochastic computation times with an upper
bound on the number of concurrently active instantiations
of each task graph. They concluded that denying service
to a newly arrived task graph considerably reduces the
number of states and schedulability analysis time compared
to rejecting the oldest instantiation in the system. Pazzaglia et
al. [22] compared the effect on control robustness of different
strategies of handling deadline misses, including different
dismissal policies. For these control applications, killing a
job at the deadline or skipping the next job if a deadline has
been missed were both preferable to queueing jobs.

In the area of mixed criticality systems, LO-criticality jobs
are aborted or dismissed to ensure that HI-criticality jobs meet
their deadlines [23]–[25]. One of the criticisms from system
engineers discussed in [23], [26] of the assumptions of Mixed-
criticality systems is that LO-criticality jobs should receive
some service if at all possible. In a resilient system [23]
started jobs run to completion, and a task is considered robust
if it can safely drop one non-started job in any extended
time interval [27]. In the bailout protocol [26], HI-criticality
jobs that overrun their budget continue their execution. The
overrun is compensated for by not starting LO-criticality
jobs, and by accounting for jobs that use less resources
than budgeted until the system has returned to normal
execution mode. In [28] HI-criticality jobs were monitored in
a multiprocessor system, and if one such job risked exceeding
its isolation-based WCET, concurrently running LO-criticality
jobs were suspended to ensure they didn’t interfere.

In the Robust Earliest Deadline algorithm [29] EDF-
scheduled tasks in a uniprocessor system are associated with
values, deadline tolerances and a criticality level. If a job
arrival leads to a WCET-based overload situation, non-critical
jobs with low value are rejected from the ready queue.
Rejected jobs may be recovered if jobs complete early. Due
to the preemptive scheduling, partly computed jobs may be
aborted. In [30], this approach was applied to aperiodic jobs
in a Total Bandwidth Server (TBS). It has been pointed out
that QoS guarantees for individual tasks cannot be provided in
such a case, but a separate server for each task is required [31].

In [32] weakly hard real-time systems were introduced,
enabling specification of a minimum number of met or
consecutively met deadlines in every window of a specified
number of task invocations, or a maximum number of
consecutive deadline misses. These are alternative or
complementary to the probabilistic approach.

Tong et al. [33] proposed holistic budgeting of Directed
Acyclic Graph (DAG) tasks to decrease DAG drop rates. The
slack from nodes that complete early and from nodes that
cannot start due to overruns in predecessor nodes is used to
complete overrunning nodes. This leads to a lower drop rate

than dropping the DAG when one node overruns, showing the
advantages of holistic budgeting and scheduling of potentially
parallel work. In queuing theory, a significant amount of work
analyzes queues with reneging or customer abandonment.
Kruk et al. [7] analyzed EDF queues where jobs are dismissed
at their deadline. Ward [34] surveyed results for queues with
reneging. Reneging can refer to client abandonment, where
a client (job) leaves the queue according to a probability
distribution over the waiting time or reneging when a deadline
is met, or a buffer is full. Ward concludes that for the over-
loaded many-server case, the story is complete. Towsley and
Panwar [35] introduced Stochastic Earliest Deadline policies
in the case where deadlines are not known to the scheduler, and
analyzed the finite buffer case. If a job arrives at a full buffer,
the policy of removing the job stochastically closest to its
deadline is at least as good as the arbitrary policy. Whitt [36]
investigates overloaded queues with different abandonment
time and service time distributions. Abandonment time
distributions significantly affect the mean queue length and
waiting time. Most work considers abandonment distributions
that depend on job waiting times, but there is also admission
control or buffer overflow management that takes into account
the state of the queue as a whole. More recently, Whitt has
reviewed work on time-varying queues [37]. In [38] Whitt
studied service rate controls to stabilize queue performance
with time-varying arrival rate. Performance measures were
mean queue lengths and mean waiting times. It was shown
that any control that asymptotically stabilizes mean queue
lengths cannot also stabilize mean waiting times.

In networking, packets sometimes need to be dropped
due to full buffers. In Active Queue Management, packets
are dropped preemptively before the buffer is full, to reduce
congestion and waiting times. Random Early Detection [39]
has been proposed for congestion avoidance, where packets
are dropped with a probabilistic approach. More recently,
CoDel has been proposed [40], that is based on the minimum
waiting time in the queue over a specified time interval. If
this minimum waiting time exceeds a target value, packets
start to be dismissed. The time between successive dismissals
is decreased until the target waiting time is met.

III. SYSTEM MODEL AND NOTATION

A. Task Model

We consider a task τ that releases at most κ jobs at the
same instant. Job release instants are separated by at least a
minimum separation time p. Each job Jj has the arrival time
aj . A job computation time cj is an outcome of the random
variable C; thus, the job’s finishing time fj and response
time are outcomes of random variables as well. We denote
the response time random variable R. The task has a relative
deadline D, so each job has the deadline aj +D. The job
computation times are upper bounded by the WCET c↑.

The computation time quantile cϕ is defined as:

cϕ :=inf{x :P[C≤x]≥ϕ} (1)

TABLE I
OVERVIEW OF NOTATION.

Symbol Description

τ , Jj Task, job j of τ .
κ Maximum number of concurrently released jobs of τ .
p Minimum separation of job release instants of τ .
D Relative deadline of τ .

aj , fj Arrival and finishing time of Jj .
cj , c↑ Computation time of Jj and the WCET of τ .

C, R Computation time and response time random variables.
cωϕ The ϕ quantile of the computation times of τ for a given ω.

n Number of servers.
Si Server i.

Pi, Qi, Ui Period, maximum budget and utilization of Si.
UiΣ Total utilization on Si’s processor.
qi, di Remaining budget and deadline of Si.
t, δt Time, interval when a server is executed.
gi,j Guaranteed computation time from Si prior to Jj ’s deadline.
δi,j Difference between the deadlines of Jj and Si.

W Random variable, queue wait time.
B Random variable, remaining work of served jobs.
L Random variable, work of queued jobs.
G Random variable, guaranteed computation time of a job.
∆ Time interval length.

Υ(∆) Random variable, work arriving in an interval of length ∆.
ρ Bound on the work arrival rate.
pd Dismissal probability.

The random variable W is the waiting time of an arriving job.
The random variable B is the remaining work of serviced jobs,
and the random variable L is the work of all queued jobs. The
work arriving in an interval of length ∆ is a random variable
denoted by Υ(∆). L and Υ(∆) are sums of computation time
random variables, and B is upper bounded by such a sum.

The notation used in the paper is outlined in Table I.

B. CBS Background

We recall the CBS [41] operation. A real-time task τ is
scheduled by an associated CBS Si, described by its static
parameters: maximum budget Qi and period Pi, resulting in
a utilization or bandwidth of Ui=

Qi

Pi
. Si also keeps track at

run-time of the remaining budget qi and the absolute deadline
di, two dynamic quantities that change with the current time
t ∈N. Let δt denote the length of a generic time interval in
which (a job of) a server has been executed on a CPU. Si is
idle at time t, if τ has no pending jobs at t, that is if at time
t, there exists no job Jj such that aj < t < fj . If Si is not
idle at time t, it is active if it has remaining budget (qi>0).
If the budget is depleted, it is recharging. A flowchart of
the runtime changes of the server is shown in Fig. 1. For
the purpose of this paper, each server runs on a specified
processor. The total utilization of the processor of Si is
denoted by UiΣ. We assume partitioned EDF scheduling of
servers, flanked with a per-CPU utilization-based test, which
ensures each CBS gets its reserved budget within its deadline

C. Scheduling Parallel Workload With a Group of CBS

The task τ is scheduled by a JAMS to support a potentially
parallel workload. n CBS instances, each with server period
P and maximum budget Q, are set up to share the same job

Time t, start Si : {Qi, Pi},
qi ← Qi, di ← t + Pi

State: Idle

qi ≥ (di−aj) ·
Qi
Pi

?

qi←Qi, di← aj +Pi

Job Jj arrives at aj = t

Yes

State: Active

No

qi ← qi − δt

Si executes in δt

qi = 0? State: Recharging

di← di+Pi,qi←Qi

t=di

Job completed?

Yes

No

No

Add job to queue
Job arrives

Add job to queue

Job arrives

Job in job queue?

Yes

Yes No

Fig. 1. Flowchart of the CBS update at runtime. The job handling to be
updated by the JAMS is marked in red.

Job queue
Job arrives

Jobs pulled
by servers

S1 :{Q,P}

S2 :{Q,P}

Sn :{Q,P}

Fig. 2. Overview of JAMS.

queue, as illustrated in Fig. 2. Essentially JAMS implements a
thread pool of n worker threads with guaranteed processing ca-
pacity, along with an interface to submit work to be processed,
and retrieve information about the work’s status and the result
if it is ready. The operation of JAMS is described in Section V.

D. Definition and Assumptions

We define the concept of JAMS overload in a time interval:

Definition 1. A JAMS is overloaded in the interval [t0,t1] if
the total computation times of arriving jobs in the interval
exceeds the expected provided resource by the servers, that is
if n·Q·(t1−t0)

P <
∑

j|t0≤aj≤t1cj .

In the remainder of the paper, we make the assumptions
outlined below. Asm. 1 indicates that for intervals longer

than ∆B , individual job computation times become negligible
relative to the total workload, and the amount of arriving
work in the interval is characterized by a work arrival rate
bound ρ. Asm. 2 implies that a job arriving when an idle
server has maximum budget must be accepted.

Assumption 1. For time intervals longer than ∆B , the
amount of arriving work Υ(∆) is bounded by a work
arrival rate bound ρ and a probability ϵ, such that
P[Υ(∆)>ρ·∆]<ϵ,∆>∆B .

Assumption 2. The server configuration allows for
completing a job with the computation time quantile
within the task’s deadline, that is cϕ≤Q·

⌊
D
P

⌋
.

IV. MOTIVATING EXAMPLES AND PROBLEM FORMULATION

Example 1. A task τ releases one job Jj every p=20. The
result of Jj is expected at latest at aj+60, we have D=60.
There is a fallback option in the case of occasional deadline
misses. The computation time of a job Jj is a random variable,
that takes the value of 20 with probability 0.9 and 38 with
probability 0.1, the probability mass function is (P[C=20]=
0.9,P[C=38]=0.1). The computation time random variables
are independent and identically distributed (i.i.d.).

For this example, an average of 21.8 units of work arrive
every 20 time units. Assuming that each processor provides
20 computational units in each period, the task in Example 1
cannot be scheduled on a single processor or in a single CBS.

When scheduling τ , we have some options. We may split τ
into s tasks τ1, τ2, ..., τs with p=20·s, where τ1 releases J1,
J1+s, J1+2·s, ···, and τ2 releases J2, J2+s, J2+2·s, ··· and so
on. These different tasks can be scheduled as exclusive tasks
on isolated processors or in separate CBS instances. For this
example, the task is divided into two tasks (s=2), each task
scheduled in a CBS with maximum budget Q=15 and period
P =20. An illustration is provided in Fig. 3. On average, a job
requires 21.8 units of computation, and the server provides
30 units for each job arrival. Due to the varying computation
times, some jobs will not start at their arrival time. For
instance, if a job Jj with computation time 38 starts at its
arrival time, the next job in the same server, Jj+2 will begin
the latest 13 time units after its arrival, at aj+2 + 13. This
job will be waiting even if other servers are idle at this time.
If the computation time of Jj+2 is also 38, it may finish at
aj+2+66, and miss its deadline as illustrated in the separate
queues case of Fig. 3. From simulation with the reservation of
competing servers positioned at the beginning of each period,
we see that the deadline miss rate is approximately 1%. A
server is idle and not throttled for about 21% of the time.

Using a joint job queue and starting a waiting job as
soon as any server is available reduces the risk of missing a
deadline. Simulating the same task served by the same CBS
instances sharing a joint job queue, the proportion of time
where at least one server is idle and not throttled is about
41%, and the deadline miss rate reduces to approximately
0.19%. Jj+2 is delayed as a direct effect of the long job

0 50 fj+2=106

Se
rv

er
s

Separate queues

0 50 fj+2=98

Time

Se
rv

er
s

Joint queue

Other servers’ reservations.
Job with computation time 38.
Job with computation time 20.
Job delayed by the long job.
Unaffected.
Time when job is queued.
Deadline of delayed job.

Fig. 3. Illustrations of jobs with delayed start due to a long computation
time in Example 1. Arrows indicate the time with a non-empty queue.

Jj , but if Jj+1 has a short computation time, Jj+2 starts
latest at aj+2+10. Jj+2 will still meet its deadline if it has
long computation time as illustrated in the joint queue case
of Fig. 3. Using a joint queue for time-varying jobs, such as
an MPC-task, decreases the deadline miss rate.

Example 2. We use the task in Example 1, but with a
different computation time probability mass function where
long computation times are more common. In this example,
(P[C=20]=0.4,P[C=38]=0.6).

The task in Example 2 has an average computation demand
of 30.8 units per job, higher than the computational resource of
30 that is provided by the servers. This means that the queues
will soon start growing, and all jobs will miss their deadlines.

Although job dismissal often is not explicitly implemented
in schedulers, it may be implicit. Consider a single-thread
task scheduled with SCHED_DEADLINE in Linux. If a job
overruns and the task is implemented to self-suspend until
the time for the next job activation, it will immediately
continue with the next job. In a sequential task where jobs
retrieve the most up-to-date data, this implicitly implements
the skip-next policy [22] if the next job starts once new data
has arrived. However, with the need for parallel jobs comes
a need to specify the data connected to each job. The most
straightforward way to handle this is to put the data or jobs
in a queue, leading to the risk of unbounded queue length
and tardiness in an overload situation. Support for dismissal
of items from the queue is a remedy to this problem.

Problem Formulation
Devise a job acceptance policy with low overhead for

JAMS, with the following properties when applied to a task
as outlined in Section III:

1) Out of jobs that are accepted, a configured proportion
ϕ meet their deadline.

2) If the JAMS is in a long overload interval, the proportion
of dismissed work approaches the proportion of
computation requirement that exceeds the computation
resource provided by the servers.

3) Given computational resource that exceeds the average
requirement, a bound on the worst case job dismissal
probability is derived, based on the arriving work in
each possible interval.

V. JAMS AND JOB ACCEPTANCE TEST

In this section, we outline the operation of the proposed
JAMS, and provide an analysis of its properties.

A. JAMS Operation

Jobs arrive at the JAMS, which can access the states of its
CBS. The JAMS is configured with the task relative deadline
D, a quantile ϕ of jobs that shall meet their deadline if
they are not dismissed, an estimate of this computation time
quantile cϕ, and the task’s WCET c↑. To ensure that resources
are provided to jobs with a reasonable chance of meeting
their deadline, a job Jj is transferred to a server Si only
if the server can guarantee sufficient resources prior to the
deadline of Jj . The runtime operation of a JAMS and one of
its CBS servers is illustrated in Fig. 4.

When a job arrives to the JAMS, and there exist CBS in state
Idle, the arriving job is offered to these CBS in arbitrary order.
If there is no such CBS that accepts the offer, the job is added
to the FIFO job queue with its arrival time. A CBS with more
suitable q and d may pull the job from the queue later. When
a job is pushed to the queue, any jobs at the front of the queue
that cannot be provided sufficient computational resources
prior to their deadline by any server are dismissed. Then the
arriving job (with its arrival time) is added to the job queue.

When a CBS Si is offered an arriving job or tries to
find a job on the queue to pull, it considers the amount of
computation time it can guarantee prior to the job’s deadline.
For a job Jj with deadline aj+D, the guaranteed computation
time till the job deadline is denoted as gi,j . A job is accepted
if at least cϕ computation time can be guaranteed prior to the
deadline, i.e.:

gi,j≥cϕ. (2)

When a server attempts to pull a job from the queue, it first
considers the job at the front of the queue. If this is not
accepted, it continues with the next job until a job is accepted
or the end of the queue is reached.

Race conditions may occur that are not included in
the illustration Fig. 4. We note that multiple servers may
simultaneously access the job queue. Two versions of the
JAMS are considered and evaluated. One uses the computation
time quantile configured from the start. The other estimates
the quantile from the computation times of completed jobs.
In this case, cϕ of the JAMS is updated according to the P 2

algorithm [42] when jobs are completed in the servers. The
quantile estimate will be the computation time value where
the proportion ϕ of observed computation times are below cϕ.

Example 3. Let us consider Example 1, scheduled by a JAMS
with Q=15, P =20 and n=2 as illustrated in Fig. 3. Let c↑=
40 and require ϕ=0.95 of started jobs to meet their deadlines.

For this example, the computation time quantile is cϕ=38.
If the guaranteed computation time prior to a job’s deadline
is at least 38 it will be accepted, otherwise it will be left on
the queue.

Time t, start Si : {Qi, Pi},
qi ← Qi, di ← t + Pi

State: Idle

q ≥ (di − aj) ·
Qi
Pi

?

qi←Qi, di← aj +Pi

Calculate gi,j (Eq. (4))

Job Jj with aj and D offered to Si.

Yes

gi,j ≥ cϕ?

State: Active

Yes, job pulled

No, job declined

No

qi ← qi − δt

Si executes in δt

qi = 0? State: Recharging

di← di+Pi,qi←Qi

t=di

Job completed?

Yes

No

Job in job queue?

Calculate gi,j (Eq. (4))

gi,j ≥ cϕ? Jj last job?

Yes

No, Jj← next job on queue
Yes, Jj← first job on queue

No

Yes

Yes, Jj pulled No

No

Fig. 4. Flowchart of a JAMS CBS.

Example 4. Let us again consider Example 1, scheduled
by a JAMS with Q= 15, P = 20 and n= 2 as illustrated in
Fig. 3. Let c↑=40 and require ϕ=0.8 of started jobs to meet
their deadlines.

For this example, the computation time quantile is cϕ=20.
If the guaranteed computation time prior to a job’s deadline
is at least 20, it will be started. Otherwise, it will be left in
the queue.

B. Maximum Job Queue Length

Since jobs at the front of the queue that cannot be provided
sufficient computational resources prior to their deadline
by any server are dismissed when a new job arrives, the

maximum number of queued jobs can never exceed the
number of jobs arriving during the task’s relative deadline D.
With the maximum number of jobs arriving instantaneously
κ, and the minimum separation time of subsequent job arrival
instants p, this means that the maximum job queue length is
bounded by κ·

⌈
D
p

⌉
.

C. Job Queue Waiting Time

We want to bound the waiting time of a job J∗ that arrives
at the JAMS. Denote the remaining work of the at most n
jobs executing in the servers at the arrival of J∗ with the
random variable B, and the work of all queued jobs at the
arrival with the random variable L. The waiting time of J∗

is bounded in Theorem 1.

Theorem 1. The waiting time W of a job J∗ that arrives at
a JAMS where B is the remaining work of currently running
jobs, and L is the total work of jobs on the queue at the
arrival of J∗ is bounded by Eq. (3).

W≤P ·
⌈
B+L
n·Q

⌉
(3)

Proof. The mean work to complete in a server before starting
J∗ is B+Ln , and this is completed latest at P ·

⌈
B+L
n·Q

⌉
. At

the latest at this point at least one server is available to start
executing the work of J∗.

D. Guaranteed Computation Time

When a server Si requests to pull a job from the queue
at time t, the guaranteed computation time gi,j provided
by Si prior to the deadline of Jj at the front of the queue
is calculated. To simplify these expressions we denote the
difference between Jj’s deadline and the server’s current
deadline by δi,j = aj + D − di. If δi,j < 0, then a part
of the leftover budget qi of the current server activation
can be guaranteed. The server’s execution ends latest at
t+UiΣ · (di− t), considering the total utilization UiΣ on the
processor. If δi,j≥0, the full leftover budget qi of the current
activation is guaranteed, plus Q units for each full server
period after di before Jj’s deadline, and possibly a part of
the budget in the last server period before the job’s deadline.
The guaranteed computation time gi,j can be computed as:

gi,j=


[
qi−[UiΣ ·(di−t)−(aj+D−t)]

+
]+

, δi,j<0,

qi+Q·
⌊
δi,j
P

⌋
+

+
[
Q−[UiΣ ·P−δi,j modP]

+
]+

, δi,j≥0,

(4)

where [x]
+
:=max(x,0).

For analysis purposes, we bound G in Theorem 2.

Theorem 2. A job J∗ that arrives to a JAMS with remaining
work on the servers B and queued work L will be guaranteed
at least G computation resource prior to its deadline as
outlined in Eq. (5)

G≥Q·
⌊
D

P

⌋
−Q·

⌈
B+L
n·Q

⌉
(5)

Proof. The waiting time W of J∗ is bounded in Eq. (3). The
time remaining until the deadline when the job is pulled by a
CBS is D−W . The guaranteed computation time of a server
within this time is at least Q times the number of full server
periods in D−W , giving:

G≥Q·
⌊
D−W

P

⌋
≥Q·

⌊
D

P

⌋
−Q·

P ·
⌈
B+L
n·Q

⌉
P


=Q·

⌊
D

P

⌋
−Q·

⌈
B+L
n·Q

⌉
E. Dismissal Probability

A job Jj will be dismissed if gi,j < cϕ,∀i. Therefore the
probability of dismissing a job is bounded in Eq. (6), by
inserting the bound on the guaranteed computation time in
Eq. (5), and in the last step using the bound on the served
work B≤n·c↑.

P[G<cϕ]≤P
[
Q·

⌊
D

P

⌋
−Q·

⌈
B+L
n·Q

⌉
<cϕ

]
=P

[⌈
B+L
n·Q

⌉
>

⌊
D

P

⌋
− cϕ

Q

]
≤P

[⌈
L

n·Q

⌉
>

⌊
D

P

⌋
− cϕ

Q
−
⌈
c↑

Q

⌉] (6)

1) Dismissals in an Overload Scenario: Consider a
scenario where the total work on the queue remains high for
a sufficient amount of time so that all servers are running
at full capacity, and some jobs are being dismissed because
of insufficient guaranteed computation time prior to their
deadline. At this point, the average work completion rate by
the servers is n · QP . Let the average work arrival rate during
the overload scenario be γ · n · Q

P , γ > 1. This implies that
the proportion of dismissed work is 1−γ−1, consistent with
steady-state queuing theory analysis of an overload system
with abandonment [36]. The dismissal decision for a job
is independent of the computation time of the specific job.
If computation times are independent random variables, the
proportion of dismissed jobs is also 1− γ−1. The dismissal
probability of a specific job may be higher or lower due to
variations in the work arrival rate and is bounded by Eq. (6).

We consider Example 2. In this case, computation times
are i.i.d. and the required average computational requirement
is 30.8 per job arrival, and the provided resource is 30. This
gives γ= 30.8

30 ≈1.027 and a dismissal rate of about 2.6%.
2) Dismissals With Sufficient Average Capacity: For a sys-

tem with sufficient average capacity, a bound on the dismissal
probability of a job in JAMS is outlined in Theorem 3.

Theorem 3. For a JAMS that is not overloaded in any
intervals longer than ∆L, the probability pd that a job is
dismissed is bounded by Eq. (7).

pd≤max
∆

(
P
[⌈

Υ(∆)+B
n·Q

⌉
>

∆+D

P
−
⌈
cϕ
Q

⌉])
(7)

Proof. A system that is not overloaded in any long interval
has some points in time when the queue is empty, and at

least one server is ready to start executing an arriving job
immediately. Denote a time when the last remaining idle
server goes to active state with t0. Now we consider a job J∗

arriving at t0+∆,∆> 0, assuming that all servers are busy
in the interval [t0, t0 +∆]. J∗ will start at the latest when
one server is no longer processing the remaining work of at
most n−1 jobs that were running at t0 or work that arrived
in the interval except for the work of J∗. If J∗ starts before
t0+∆+D−P ·

⌈
cϕ
Q

⌉
, it will not be dismissed.

Denote the remaining work of jobs running at t0 as B and
the work arriving in this interval except for the work of J∗

as Υ(∆). J∗ will not be dismissed if:

t0+P ·
⌈
Υ(∆)+B

n·Q

⌉
≤ t0+∆+D−P ·

⌈
cϕ
Q

⌉
(8)

Restructuring of this condition gives an upper bound on the
probability that J∗ is dismissed as:

P
[⌈

Υ(∆)+B
n·Q

⌉
>

∆+D

P
−
⌈
cϕ
Q

⌉]
(9)

For an arbitrary job Jj , if it arrives to a JAMS with at least
one server idle, it will not be dismissed due to Assumption 2,
and the bound is trivial. If it arrives to a JAMS with all servers
active, there exists a ∆ to the most recent point when the last
server went to active state. Then Eq. (9) bounds the dismissal
probability of Jj with this ∆. Eq. (7) is greater than or equal
to Eq. (9), so it bounds the dismissal probability of Jj .

A task with average computation time requirement below
that provided by the servers will experience no dismissals if
for each interval length ∆, the arriving work Υ(∆) and the
work B remaining to be served at the start of the interval
when the last server goes to active are bounded by Eq. (8).
For a system where D>P ·

(⌈
c↑

Q

⌉
+
⌈
cϕ
Q

⌉)
and work arrival

rate bound ρ≤ n·Q
P we have dismissal probability at most ϵ

in Eq. (9) for all ∆≥∆B from Assumption 1.
As ∆ grows, Eq. (8) goes toward the condition that the

provided computational resource needs to be higher than the
average demand. Υ(∆) + B in Eqs. (7) to (9) is a sum of
computation time random variables. If computation times are
independent random variables, the sum can be calculated by
convolution. If computation times are correlated, convolution
of upper bounding probabilistic WCET (pWCET) distributions
can be applied [43], or a bound can be derived in other
ways [44], [45]. If computation times are described by Markov
Models, these can be utilized to calculate the sum [46], [47].

Let us go back to Example 3. We need to consider ∆
as multiples of 20, as jobs are released with p = 20. For
∆ = 20, we have a bound on the dismissal probability as
P
[⌈

Υ(20)+B
2·15

⌉
> 20+60

20 −
⌈
38
15

⌉]
= P

[⌈
Υ(20)+B

30

⌉
>1

]
. In this

case B may contain almost the full work of 1 job, if the queue
was empty just a short time prior to t0. Υ(20) contains 1 job,
that arrived at t0. It is clear that with this task and config-
uration, we cannot guarantee that a job arriving one period
after the start of a queue is not dismissed. With computation
times 20 or 38, two jobs will not fit in the total budget of 30.

For ∆ = 40 and D = 60, Υ(40) contains two jobs and the
dismissal probability bound is P

[⌈
Υ(40)+B

30

⌉
>2

]
. All three

jobs in B+Υ(40) need to have computation time 20 to ensure
no dismissal, and the probability of this is 0.93. The dismissal
probability bound for jobs arriving within two periods from t0
is 1−0.93=0.271. For ∆=60, we need to consider a total of
4 jobs in B+Υ(60). For D=60, we have P

[⌈
Υ(60)+B

30

⌉
>3

]
,

and all four jobs need to have computation time 20 to ensure
no dismissal, the probability of this is about 0.34.

Considering the lower computation time quantile in
Example 4, this will lead to lower dismissal probability
bounds, as the term

⌈
38
15

⌉
is replaced by

⌈
20
15

⌉
.

Example 5. Let us consider Example 3, but now with a
longer relative deadline of 100.

With the relative deadline of 100, we would instead
have the dismissal probability bound for ∆ = 20 as
P
[⌈

Υ(20)+B
2·15

⌉
> 20+100

20 −
⌈
38
15

⌉]
= P

[⌈
Υ(20)+B

30

⌉
>3

]
. We see

that even in the worst case where both jobs contributing work
to Υ(20) + B have computation time 38, we can guarantee
that there is no dismissal at this point.

With ∆=40, we have P
[⌈

Υ(40)+B
30

⌉
>4

]
, and the dismissal

probability is 0.
With ∆ = 60, P

[⌈
Υ(60)+B

30

⌉
>5

]
at least one of the jobs

needs to be short to avoid a dismissal, so the dismissal proba-
bility bound equals the probability of all jobs being long, 0.14.

F. Probability of Meeting the Deadline

We show that for a job that is accepted by a server, the
deadline will be met with at least probability ϕ, provided the
probability is at least ϕ that the job’s computation times is
below cϕ. For independent computation times, ϕ represents a
bound on the probability that C<cϕ for each job that is run.
For correlated computation times, individual jobs may have
higher or lower probability of exceeding the quantile. In this
case the average ratio of started jobs that meet their deadline
to started jobs is at least ϕ.

Theorem 4. Assuming i.i.d. computation times, a job Jj that
is accepted by a CBS in JAMS has at least probability ϕ of
meeting its deadline.

Proof. A job that is accepted is guaranteed at least cϕ
computation time prior to its deadline. From this if follows
that P[R≤D]≥P[C≤cϕ]≥ϕ.

Theorem 5. The rate of jobs accepted by a CBS in JAMS
that meet their deadline is at least ϕ.

Proof. A job Jj that is accepted is guaranteed at least cϕ
computation time prior to its deadline. The outcome of the
acceptance test is independent of the computation time of Jj .
Therefore, the rate of accepted jobs that meet their deadlines
is at least the rate of jobs with computation time below cϕ,
that is ϕ.

We note that using a precomputed computation time
quantile derived from a pWCET distribution that upper
bounds the computation time distribution ensures that the
probability bound on meeting the deadline holds for each
accepted job even with correlation.

A general bound on the probability of meeting the deadline,
that holds even for jobs with computation time cj > cϕ is
derived in Eq. (10).

P[C≤G]≥P
[
C≤Q·

⌊
D

P

⌋
−Q·

⌈
B+L
n·Q

⌉]
=P

[⌈
B+L
n·Q

⌉
+

C
Q

≤
⌊
D

P

⌋] (10)

We return to the comparison of Examples 3 and 4. We
have seen that a lower computation time quantile leads to
lower dismissal probability, but this comes at the price of a
higher probability of deadline miss for started jobs.

Finally, we note that an upper bound on the dismissal
probability pd, and a lower bound on the probability that an
accepted job meets its deadline ϕ, imply a lower bound on the
probability of meeting the deadline for every job as (1−pd)·ϕ.

VI. IMPLEMENTATION AND OVERHEADS

The mechanism described in Section V has been imple-
mented as a multi-threaded C program on the Linux Operating
System, managing a limited-size shared queue that exposes
special blocking operations to push jobs into the queue and
pull admitted jobs out of it, alongside performing the actual
dismissal operations described in Section V. Our JAMS im-
plementation may optionally use a kernel module we realized
for faster and more accurate access to the SCHED_DEADLINE

state parameters at runtime, as described below.

A. JAMS Push and Pull Operations

The push operation is a simple blocking operation that
pushes jobs into a FIFO-ordered queue, managed through
a classical circular buffer. In the JAMS design, jobs are
pushed all with the same relative deadline; thus, their
submission order corresponds to a deadline-based order. In
the experimentation described below, we configured the queue
size never to hit the size limit in a push operation. After
enqueuing a job for processing, the push operation notifies
other threads possibly waiting on a pull through a condition
variable. The pull operation is more involved and contains the
majority of our JAMS implementation: we retrieve the runtime
left and absolute deadline of the CBS server (see below),
then we scan the jobs waiting in the queue, starting from the
earliest submitted job, checking whether the budget available
till the deadline is sufficient for the estimated percentile of
the job computation time, using Eq. (2): in such a case, the
job is pulled out of the queue and returned to the caller for
processing, otherwise we move forward to check the next job
in the queue. In the latter case, the job is not immediately
dismissed but left for the other threads in the JAMS CBS
group, which will, in turn, evaluate the job based on their
own CBS instantaneous parameters. A job that is not picked

up by any server is eventually dismissed. Whenever the pull
operation cannot find admissible jobs to process in the queue,
it blocks on a condition variable, waiting for a push operation.

B. Reading SCHED_DEADLINE Parameters
The SCHED_DEADLINE scheduler available on Linux has

a direct API to read the statically configured maximum
runtime, relative deadline, and period of a CBS server
(through the sched_getattr() syscall), but it lacks an
API to retrieve the leftover runtime and absolute deadline.
However, these parameters can be accessed through the /proc
filesystem, reading the per-task sched special file, where the
dl.runtime and dl.deadline parameters can be found for
tasks under the SCHED_DEADLINE policy. The runtime value
accessible this way is only guaranteed to be updated at each
periodic system tick, with a frequency of HZ. Reconfiguring
the kernel with a 1ms HZ results in a more accurate reading.
However, the /proc interface is designed for debugging rather
than for production use, so it suffers from inherent inefficiency.
For example, all quantities are wastefully formatted in decimal
notation from the kernel space and have to be converted back
into user space. Therefore, we realized a kernel module that
allows for accurately reading the SCHED_DEADLINE param-
eters directly in binary format, with much greater efficiency.
On the Raspberry Pi 4 board used for our experimentation,
reading the current parameters using the /proc interface
resulted in a 228±35µs per-reading overhead, while with our
kernel module, this was reduced to a 10.8±2.4µs per-reading
overhead. Note that, in JAMS, worker threads need to retrieve
this information each time a job is evaluated for processing
to apply the acceptance policy properly.

C. JAMS Overheads
This subsection discusses the computational and memory

overheads due to using JAMS, in its current implementation.
The time required for JAMS push and pull operations is
bounded by a constant time per call. The most significant over-
head is observed during ‘pull‘ when reading the server param-
eters, for which a significant improvement is discussed in Sec-
tion VI-B (reducing it from 228µs down to 10.8µs). Regarding
how often we pull, in a case where JAMS is mainly idle,
nearly every server will wake up and attempt a pull at each job
arrival. When JAMS servers are mainly busy, each server will
perform a pull per processed job, roughly with a rate equal to
the arrival rate divided by the number of servers. With our im-
plementation and evaluation set-up, the average pull time with
the improvement discussed in Section VI-B is 49µs, and the
average push time is 9µs. In our evaluation scenarios, job com-
putation times are 10−300ms, making those overheads quite
negligible from a practical standpoint. Regarding the memory
overhead, arrival times must be stored for all queued jobs.

VII. EXPERIMENTAL EVALUATION

In this section, we provide results from the experimental
evaluation1 of our proposed JAMS mechanism, implemented

1Code and data for the artifact evaluation are available at
https://github.com/annafriebe/RTAS 25 JAMS AE.

as detailed in Section VI. The behavior of the proposed
JAMS and dismissal mechanism is evaluated in the presence of
both synthetic and realistic workload scenarios. We compare
the deadline miss rate and job dismissal rate for different
configurations and workloads. We also show how application
of the JAMS acceptance policy affects the response times
throughout an execution sequence. A comparison is performed
between applying the JAMS dismissal policy with a statically
precomputed quantile of the computation times versus using an
online estimated quantile. Comparisons are performed against
a baseline with multiple servers that always pull the first avail-
able job from the queue without applying any dismissal policy.

Two types of workload are considered in the evaluation: syn-
thetically generated computation times with a lognormal dis-
tribution and recorded computation times from an MPC task.

A. Computation Time Data

The MPC task is based on the Unmanned Ground Vehicle
(UGV) path planning with obstacles example of the libmpc++
library [48]. The Sequential Quadratic Programming algorithm
SLSQP [49] from the NLopt library [50] is used for the
optimization. Predictions and control are computed over
a 6-step horizon. A list of waypoints is used, and when
a waypoint is reached, the next is obtained from the list
in a circular manner. The simulated UGV is run in two
environments, with smaller or larger obstacles, resulting in
lighter or heavier computational load. The starting point,
waypoint list, and configuration of the optimization are the
same. The libmpc++ optimization time logging is modified
to use the clock_gettime(CLOCK_THREAD_CPUTIME_ID)

syscall, and log the computation time of the optimization
rather than the response time.
10 runs of 5000 optimization steps are performed in

each environment. The computation time data collection is
performed on a Raspberry Pi 3B+ with PREEMPT_RT where
frequency scaling and USB have been disabled. The task
is scheduled with the highest priority FIFO scheduling and
pinned to a core with the cpuset utility. Computation times
are retrieved from the libmpc++ log files. The experimental
Cumulative Distribution Function (CDF) of the MPC
computation times are reported in Fig. 5. There is a high
degree of correlation among the computation times, since
they are affected by the UGV state dynamics.

We also used synthetic computation times that have been
generated with lognormal distributions. These have been
shown to be a good fit for computation time distribu-
tions in some applications [51]. We have generated 10
lognormal traces, drawing the average randomly from the
range [40,60]ms and the standard deviation from the range
[30,40]ms. The distribution is bounded to the range [10,160] by
discarding samples outside this range. The synthetically gener-
ated computation time CDFs are reported in Fig. 6. Means and
standard deviations shown in the figure are empirical from the
samples in the bounded range, with the exception of the last
dotted line. In this case these are the mean and standard devia-
tion of the lognormal distribution prior to bounding the range.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Execution time (ms)

heavy 0 (m=86ms, s=52ms)
heavy 1 (m=87ms, s=54ms)
heavy 2 (m=88ms, s=54ms)
heavy 3 (m=82ms, s=49ms)
heavy 4 (m=85ms, s=53ms)
heavy 5 (m=81ms, s=48ms)
heavy 6 (m=86ms, s=52ms)
heavy 7 (m=80ms, s=49ms)
heavy 8 (m=84ms, s=52ms)
heavy 9 (m=84ms, s=51ms)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Execution time (ms)

light 0 (m=56ms, s=23ms)
light 1 (m=57ms, s=22ms)
light 2 (m=56ms, s=22ms)
light 3 (m=55ms, s=20ms)
light 4 (m=56ms, s=23ms)
light 5 (m=55ms, s=22ms)
light 6 (m=55ms, s=22ms)
light 7 (m=55ms, s=21ms)
light 8 (m=54ms, s=19ms)
light 9 (m=55ms, s=21ms)

Fig. 5. Experimental CDFs of computation times for the heavier (top) and
lighter (bottom) MPC traces.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 20 40 60 80 100 120 140 160

Cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Execution time (ms)

lognorm 0 (m=43ms, s=28ms)
lognorm 1 (m=44ms, s=28ms)
lognorm 2 (m=48ms, s=26ms)
lognorm 3 (m=55ms, s=30ms)
lognorm 4 (m=56ms, s=28ms)
lognorm 5 (m=56ms, s=29ms)
lognorm 6 (m=51ms, s=26ms)
lognorm 7 (m=51ms, s=28ms)
lognorm 8 (m=47ms, s=29ms)
lognorm 9 (m=41ms, s=27ms)

lnorm (m=40ms, s=35ms)

Fig. 6. Experimental CDFs of synthetic i.i.d. computation times generated
from lognormal distributions (applying a truncation of the distributions in
the [10,160]ms range).

B. Evaluation Program and Test-Bed Setup

The described JAMS mechanism has been used in the
program we realized for the experimental validation, where
one thread was dedicated to submitting jobs to JAMS via
the push operation, while n worker threads used the pull
operation. Each thread was attached to a SCHED_DEADLINE

reservation with configurable dl_runtime and dl_deadline

= dl_period parameters. Reservations were configured in
partitioned EDF mode2. Job computation times were provided
as trace files input to the program, produced according to the
workload scenarios described in Section VII-A. The thread
submitting jobs to the JAMS has been periodically activated,

2This was obtained via disabling the in-kernel access control by writing -1
to sched_rt_runtime_us in /proc/sys/kernel, then setting
the needed affinity masks on SCHED DEADLINE threads.

with a specified job inter-arrival period. The worker threads
have been using the special pull operation to retrieve the
admitted jobs and then process them by performing wasteful
computations for the amount of time of each job, as instructed
by the trace file that was read at the beginning of the program.
Finally, they measured the response time for the job, storing
it in an in-memory array. At the end of the program, all the
stored response times have been dumped into an output file.
In all experiments, jobs are released periodically every 80ms,
equal to the server period P .

The experiments have been run on a Raspberry Pi 4 Model
B board equipped with an Arm Cortex-A72 quad-core CPU
and 3.7GiB of RAM, with the CPU frequency locked at the
maximum value via cpufreq. The JAMS was configured
with 2 worker threads pinned down on cores 2 and 3, and
the thread submitting requests pinned down on core 1. The 3
cores have been isolated from the general OS workload using
the isolcpus boot parameter of the kernel. Additionally, all
experiments were carried out at runlevel 1 to avoid starting
unnecessary services on the platform.

C. Experiment 1 – MPC Traces

In the first experiment, we performed a program run using
the 10 traces from the MPC use-case whose distribution is
reported in Fig. 5. We have reported the obtained deadline
miss percentage and dismissed jobs percentage in Fig. 7.
The relative task deadline is 480 ms, chosen from the MPC
6-step horizon and the 80 ms period. The top plot shows the
results obtained processing the 10 more demanding traces,
tagged “heavy”, using a per-CBS allocation bandwidth of
60%. When using no dismissal, the system turns out to be
quite overloaded throughout the run, resulting in deadline
miss rates between 30% and 60%, as visible from the “No
dismissal” violet dots cloud at the bottom right of the plot.
When enabling the JAMS acceptance policy configured
statically with the known 95th percentile of the input traces,
we obtain roughly 1% of deadline misses at the expense of
a 10% of job dismissals (green orthogonal crosses cloud).
The results are aligned with our deadline-miss theoretical
expectations in Theorem 5, as the system would be supposed
to guarantee at least a 95% of deadline hit rate under these
conditions. Switching to using a dynamic percentile estimator,
we obtain the green oblique crosses cloud, having a slightly
lower dismissal rate at the expense of doubling the deadline
miss ratio, which stays safely within the 5% design bound
(highlighted as the green vertical dashed bar in the plot).

Moving to the plot’s blue and brown dots cloud series, we
can see a similar behavior obtained by configuring JAMS
with a different target percentile, namely 90th and 85th (blue
and brown series, respectively). In both cases, the obtained
results confirm what just discussed above, with the difference
that, when JAMS uses a lower computation time percentile
in its configuration, it tends to admit a higher number of
jobs, obtaining a higher percentage of deadline misses, which
keeps staying safely below the theoretical bounds (10% and

0

1

2

5

10

20

0 0.10 0.20 0.5 1 2 5 10 20 50 100
//

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d

jo
bs

 (%
)

Missed jobs (%)

MPC heavy traces, 2x60% bandwidth

0

1

2

5

10

20

0 0.10 0.20 0.5 1 2 5 10 20 50 100
//

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d

jo
bs

 (%
)

Missed jobs (%)

MPC heavy traces, 2x70% bandwidth

0

1

2

5

0 0.10 0.20 0.5 1 2 5 10 20
//

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d

jo
bs

 (%
)

Missed jobs (%)

MPC light traces, 2x40% bandwidth

Fig. 7. Missed jobs (on the X axis) in % over the processed jobs, compared
to the dismissed jobs % (on the Y axis), obtained with no dismissals baseline
(violet dots), and JAMS with configurations of the percentile (various point
colors), both when statically configured and dynamically estimated (orthog-
onal vs oblique crosses). Note that the X and Y axes are on a logarithmic
scale, broken close to the origin so that 0 values can also be visualized.

15% marked with a blue and brown dashed vertical bar in
the two plots).

To mitigate the need to dismiss jobs with a heavy workload,
we can assign more computational resources to JAMS, increas-
ing the per-CPU bandwidth from 60% to 70%. The effects
of such a change on the various configurations are shown
in the second plot of Fig. 7. In this case, the baseline runs
exhibit significantly fewer deadline misses (reduced from the
previous 30%-60% down to 15%-30%); however, they are still
above the desirable threshold of 5%, for example. The JAMS
mechanism, in this case, also proves to be beneficial, managing
to keep the deadline-miss rate for the processed jobs within
the design bounds (the usual three percentiles are shown in the
picture), applying a dismissal rate roughly equal to half the one
of the previous case with the per-CPU bandwidth of 60%.

The bottom plot in Fig. 7 shows the results obtained
processing the 10 lighter traces, tagged “light”, using a per-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000

short trace 0 exec times
short trace 0, baseline

short trace 0, JAMS
short trace 0, JAMS dismissals

deadline

Jo
b

re
sp

on
se

 ti
m

e
(m

s)

Job Id

Fig. 8. Excerpt of computation times for the MPC lightweight trace 0 (gray
line), and the per-job response times obtained using JAMS vs the baseline.

CBS allocated bandwidth of 40%. Under these conditions,
our baseline without dismissals results in a deadline-miss
rate between 5% and 16%, visible in the “No dismissals”
violet dots at the bottom right of the plot. Enabling our
JAMS dismissal policy, with a configured 95% of target
deadline-miss bound, we obtain deadline-miss rates between
0.5% and 1.5% (again safely below the design bound), at the
expense of a dismissal rate between 1.5% and 3.5%.

In the collected experimental data, a final piece of informa-
tion worth a look at is the number of consecutive jobs that miss
their deadline or are dismissed. Fig. 8 reports the response
times obtained for the first 1000 jobs in the experiment using
the MPC light trace 0, without any dismissal policy (blue dots),
versus using JAMS with a statically configured 95% percentile
(red dots), where job dismissals are highlighted by red crosses.
It is clear that without a dismissal policy, transient overloads
lead to long periods with no jobs producing timely results.

D. Experiment 2 – MPC Traces With Real-Time Load

0

1

2

5

10

20

50

100

0 0.10 0.20 0.5 1 2 5 10 20 50 100
//

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d

jo
bs

 (%
)

Missed jobs (%)

MPC heavy traces, 2x60% bandwidth

Fig. 9. Missed jobs (X axis) in % over the processed jobs, compared to
the dismissed jobs % (Y axis). The board was hosting an additional 15% of
per-CPU real-time reservations, spread across 3 real-time tasks on each CPU.

We also experimented with the JAMS mechanism running
alongside other real-time workload on the platform. As
JAMS is designed around using CBS and partitioned EDF
for temporal isolation among multiple real-time tasks, the
additional load on the platform was also run through CBS
reservations. More specifically, we performed a run of the

0

1

2

5

10

20

50

100

0 0.10 0.20 0.5 1 2 5 10 20 50 100
//

No dismissal
Static 95th percentile

Dynamic 95th percentile
Static 90th percentile

Dynamic 90th percentile
Static 85th percentile

Dynamic 85th percentile

D
is

m
is

se
d

jo
bs

 (%
)

Missed jobs (%)

Lognormal traces, 2x30% bandwidth

Fig. 10. Missed jobs (on the X axis) in % over the processed jobs, compared
to the dismissed jobs % (on the Y axis).

heavy traces described above, served by 2 CBS servers
occupying 60% of the CPUs 2 and 3, deploying on each
of these 2 CPUs also additional 3 real-time tasks, attached
to CBS reservations with runtime and period=deadline of
(3ms,60ms), (5ms,100ms) and (7ms,140ms), for a total of
additional 15% of real-time CPU workload.

JAMS was made aware of the total utilization of the CPUs
where its CBS servers were deployed, so to correctly compute
the available budget to deadline gi,j in Eq. (4). The obtained
results are summarized in Fig. 9, where, alongside the usual
“No dismissal” points visible at the bottom right of the plot,
we can see the results from JAMS configured with 95th, 90th
and 85th percentiles of the computation times distributions
(in green, blue and brown dots, respectively). Results are
reported with statically configured percentiles (orthogonal
crosses) and dynamically estimated ones (oblique crosses).
The expected percentile bounds on the deadline misses are
represented with vertical dashed lines with the same color as
the points corresponding to that configured percentile (green,
blue, and brown for 95th, 90th, and 85th, respectively).

E. Experiment 3 - Lognormal I.I.D. Traces

We performed another experiment using the lognormal
traces shown in Fig. 6. In this case, we used JAMS configured
with 2 threads, 30% of per-CBS bandwidth, a relative task
deadline of 480 ms, and the usual three percentile configura-
tions. The obtained results are shown in Fig. 10. In this case,
the lognormal traces were generated using different parameters
drawn at random, as described earlier. Therefore, with the
configured CBS bandwidth assignment, we obtained a wide
range of different results, evident from the “No dismissal”
violet dots scattered throughout the X axis, from 2.5% to
100% of deadline miss rates. Interestingly, applying the JAMS
mechanism to these cases, we consistently obtain a deadline-
miss ratio below the configured target percentile (95th,
90th, and 85th, highlighted as dashed vertical lines as usual),
obtained at the cost of applying a dismissal rate that also varies
greatly across the cases, from 2% to nearly 50% of dismissals.

We also performed a run designed to validate the dismissal
probability bound in Theorem 3. This was done by running our
experimentation using the last trace shown as a dashed curve in

Fig. 6, with JAMS configured as usual with 2 CBS servers with
a 60% bandwidth and a job deadline of 240ms. Over the run,
we experienced 0.04% of job dismissals. The theoretical dis-
missal rate bound from Eq. (6) is derived, calculating B+L as
a convolution of an increasing number of bounded lognormal
distributions for several ∆ as multiples of 80ms. The dismissal
probability bound is 1.2%, observed for the shortest ∆.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced the Job Acceptance Multi-Server
(JAMS) mechanism as an extension of the Constant
Bandwidth Server (CBS) for efficient resource allocation in
real-time systems. By leveraging a shared job queue across
multiple CBS instances, JAMS enables dynamic resource
sharing among tasks with varying computational demands
and deadlines. Its targeted job acceptance and dismissal
strategy prioritizes jobs with a high likelihood of meeting
their deadline, limiting the impact of job tardiness and
overloading. Experimental evaluation with synthetic and
realistic workloads showed that JAMS significantly reduces
the deadline miss rate compared to a baseline system that
lacks a dismissal policy. More specifically, JAMS consistently
meets design-bound deadline-miss ratios while managing
resource demands through adaptive dismissal rates, showing
robust performance under several diverse workload conditions.

In the future, we plan to extend the present work in
various directions. On the analysis side, the theoretical
bounds on dismissal probability presented in the paper may
be pessimistic in certain scenarios. Refining these bounds
to achieve tighter estimates would improve the applicability
of the approach in a broader set of scenarios. From an
experimental perspective, more extensive experimentation
is needed to assess possible scalability limitations of the
proposed technique in the presence of several CBS servers
pulling from the same shared queue. Albeit JAMS is proposed
in the context of real-time embedded platforms, where the
number of available CPUs might be limited, future embedded
platforms seem to trend into featuring dozens of cores
easily. Therefore, further testing on diverse architectures,
including distributed and cloud/edge-based real-time systems,
would provide insights into JAMS’s scalability and resilience
in a wide range of use-cases, such as real-time cloud
computing [52]–[55]. Finally, on the implementation side,
our current JAMS prototype can certainly be improved by
moving the queue management logic into kernel space. This
would have the advantage of being able to easily access the
CBS scheduling parameters of the SCHED_DEADLINE threads
participating in a JAMS queue, with the ability to wake them
up only when jobs can certainly be accepted.

REFERENCES

[1] X. Yang and L. T. Biegler, “Advanced-multi-step nonlinear model
predictive control,” Journal of process control, vol. 23, no. 8, pp.
1116–1128, 2013.

[2] M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif, and A. Tajer,
“FastSLAM 2.0 running on a low-cost embedded architecture,” in
2014 13th International Conference on Control Automation Robotics
& Vision (ICARCV). IEEE, 2014, pp. 1421–1426.

[3] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerospace and Electronic Systems Magazine,
vol. 25, no. 7, pp. 53–82, 2010.

[4] D. Fox, “Adapting the sample size in particle filters through KLD-
sampling,” The international Journal of robotics research, vol. 22,
no. 12, pp. 985–1003, 2003.

[5] L. Abeni and G. Buttazzo, “Integrating multimedia applications in
hard real-time systems,” in Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No. 98CB36279). IEEE, 1998, pp. 4–13.

[6] S. Baruah, J. Goossens, and G. Lipari, “Implementing constant-
bandwidth servers upon multiprocessor platforms,” in Proceedings.
Eighth IEEE Real-Time and Embedded Technology and Applications
Symposium. IEEE, 2002, pp. 154–163.

[7] Ł. Kruk, J. Lehoczky, K. Ramanan, S. Shreve et al., “Heavy traffic
analysis for EDF queues with reneging,” The Annals of Applied
Probability, vol. 21, no. 2, pp. 484–545, 2011.

[8] S. Manolache, P. Eles, and Z. Peng, “Schedulability analysis of
applications with stochastic task execution times,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 3, no. 4, pp. 706–735, 2004.

[9] S. Natarajan and D. Broman, “Timed C: An extension to the C
programming language for real-time systems,” in 2018 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2018, pp. 227–239.

[10] T. Cucinotta and D. Faggioli, “An exception based approach to timing
constraints violations in real-time and multimedia applications,” in
International Symposium on Industrial Embedded System (SIES), July
2010, pp. 136–145.

[11] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel
real-time tasks on multi-core processors,” in 2010 31st IEEE Real-Time
Systems Symposium. IEEE, 2010, pp. 259–268.

[12] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core
real-time scheduling for generalized parallel task models,” Real-Time
Systems, vol. 49, pp. 404–435, 2013.

[13] I. I. Lupu and J. Goossens, “Scheduling of hard real-time multi-thread
periodic tasks,” in 19th International Conference on Real-Time and
Network Systems, RTNS ’11, Nantes, France, September 29-30, 2011.
Proceedings, S. Faucou, A. Burns, and L. George, Eds., 2011, pp. 35–44.
[Online]. Available: http://rtns2011.irccyn.ec-nantes.fr/files/rtns2011.pdf

[14] J. K. Ousterhout et al., “Scheduling techniques for concurrent systems.”
in ICDCS, vol. 82, 1982, pp. 22–30.

[15] W. Ali and H. Yun, “RT-Gang: Real-time gang scheduling framework for
safety-critical systems,” in 2019 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). IEEE, 2019, pp. 143–155.

[16] S. Ahmed and J. H. Anderson, “Soft real-time gang scheduling,” in 2023
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 331–343.

[17] A. Parri, M. Marinoni, J. Lelli, G. Lipari et al., “An implementation
of a multiprocessor bandwidth reservation mechanism for groups of
tasks,” in Proceedings of the 16th Real Time Linux Workshop, OSADL,
Ed., Dusseldorf, Germany, 2014.

[18] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time
scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[19] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in 23rd IEEE Real-Time Systems Symposium, 2002. RTSS
2002. IEEE, 2002, pp. 289–300.

[20] K. Zagalo, Y. Abdeddaı̈m, A. Bar-Hen, and L. Cucu-Grosjean,
“Response time stochastic analysis for fixed-priority stable real-time sys-
tems,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 3–14, 2022.

[21] J.-J. Chen, M. Günzel, P. Bella, G. von der Brüggen, and K.-H. Chen,
“Dawn of the dead (line misses): Impact of job dismiss on the deadline
miss rate,” arXiv preprint arXiv:2401.15503, 2024.

[22] P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin, “DMAC:
Deadline-miss-aware control,” in 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019, p. 1.

[23] A. Burns and R. I. Davis, “Mixed criticality systems-a review,” Depart-
ment of Computer Science, University of York, Tech. Rep., Feb. 2022.

[24] S. K. Baruah, A. Burns, and R. I. Davis, “Response-time analysis
for mixed criticality systems,” in 2011 IEEE 32nd Real-Time Systems
Symposium. IEEE, 2011, pp. 34–43.

[25] H.-M. Huang, C. Gill, and C. Lu, “Implementation and evaluation
of mixed-criticality scheduling approaches for sporadic tasks,” ACM

Transactions on Embedded Computing Systems (TECS), vol. 13, no. 4s,
pp. 1–25, 2014.

[26] I. Bate, A. Burns, and R. I. Davis, “An enhanced bailout protocol for
mixed criticality embedded software,” IEEE Transactions on Software
Engineering, vol. 43, no. 4, pp. 298–320, 2016.

[27] A. Burns, R. I. Davis, S. Baruah, and I. Bate, “Robust mixed-criticality
systems,” IEEE Transactions on Computers, vol. 67, no. 10, pp.
1478–1491, 2018.

[28] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange,
“Run-time control to increase task parallelism in mixed-critical
systems,” in 2014 26th Euromicro Conference on Real-Time Systems.
IEEE, 2014, pp. 119–128.

[29] G. C. Buttazzo, J. A. Stankovic et al., “RED: Robust earliest deadline
scheduling,” in Proc. of 3rd International Workshop on Resonsive
Computing Systems, 1993.

[30] M. Spuri, G. Buttazzo, and F. Sensini, “Robust aperiodic scheduling
under dynamic priority systems,” in Proceedings 16th IEEE Real-Time
Systems Symposium. IEEE, 1995, pp. 210–219.

[31] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time
systems,” Real-Time Systems, vol. 27, pp. 123–167, 2004.

[32] G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,”
IEEE transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[33] Z. Tong, S. Ahmed, and J. H. Anderson, “Holistically budgeting
processing graphs,” in 2023 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2023, pp. 27–39.

[34] A. R. Ward, “Asymptotic analysis of queueing systems with reneging: A
survey of results for FIFO, single class models,” Surveys in Operations
Research and Management Science, vol. 17, no. 1, pp. 1–14, 2012.

[35] D. Towsley and S. Panwar, Optimality of the stochastic earliest deadline
policy for the G/M/c queue serving customers with deadlines. Citeseer,
1991.

[36] W. Whitt, “Fluid models for multiserver queues with abandonments,”
Operations research, vol. 54, no. 1, pp. 37–54, 2006.

[37] ——, “Time-varying queues,” Queueing models and service
management, vol. 1, no. 2, 2018.

[38] ——, “Stabilizing performance in a single-server queue with time-
varying arrival rate,” Queueing Systems, vol. 81, pp. 341–378, 2015.

[39] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on networking, vol. 1,
no. 4, pp. 397–413, 1993.

[40] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[41] L. Abeni, G. Lipari, and J. Lelli, “Constant bandwidth server revisited,”
Acm Sigbed Review, vol. 11, no. 4, pp. 19–24, 2015.

[42] R. Jain and I. Chlamtac, “The P2 algorithm for dynamic calculation of
quantiles and histograms without storing observations,” Communications
of the ACM, vol. 28, no. 10, pp. 1076–1085, 1985.

[43] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic
schedulability analysis techniques for Real-Time systems,” LITES:
Leibniz Transactions on Embedded Systems, pp. 1–53, 2019.

[44] F. Marković, P. Roux, S. Bozhko, A. V. Papadopoulos, and B. B.
Brandenburg, “CTA: A correlation-tolerant analysis of the deadline-
failure probability of dependent tasks,” in 2023 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2023, pp. 317–330.

[45] K.-H. Chen, N. Ueter, G. von der Brüggen, and J.-J. Chen, “Efficient
computation of deadline-miss probability and potential pitfalls,” in
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2019, pp. 896–901.

[46] B. V. Frias, L. Palopoli, L. Abeni, and D. Fontanelli, “Probabilistic real-
time guarantees: There is life beyond the iid assumption (outstanding
paper),” in 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2017, pp. 175–186.

[47] A. Friebe, F. Marković, A. V. Papadopoulos, and T. Nolte, “Efficiently
bounding deadline miss probabilities of Markov chain real-time tasks,”
Real-Time Systems, pp. 1–48, 2024.

[48] N. Piccinelli, “Libmpc++: A library to solve linear and non-linear
MPC,” https://github.com/nicolapiccinelli/libmpc.

[49] D. Kraft, “Algorithm 733: TOMP–fortran modules for optimal control
calculations,” ACM Transactions on Mathematical Software, vol. 20,
pp. 262–281, 1994.

[50] S. G. Johnson, “The NLopt nonlinear-optimization package,”
http://github.com/stevengj/nlopt.

[51] P. Skarin, “Control over the cloud: Offloading, elastic computing, and
predictive control,” Ph.D. dissertation, Lund University, 2021.

[52] M. Garcı́a-Valls, T. Cucinotta, and C. Lu, “Challenges in real-time
virtualization and predictable cloud computing,” Journal of Systems
Architecture, vol. 60, no. 9, pp. 726–740, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762114001015

[53] S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. Phan, I. Lee, and
O. Sokolsky, “RT-Open Stack: CPU resource management for real-time
cloud computing,” in 2015 IEEE 8th International Conference on
Cloud Computing, June 2015, pp. 179–186.

[54] R. Andreoli, H. Gustafsson, L. Abeni, R. Mini, and T. Cucinotta,
“Optimal deployment of cloud-native applications with fault-tolerance
and time-critical end-to-end constraints,” in Proceedings of the
IEEE/ACM 16th International Conference on Utility and Cloud
Computing, ser. UCC ’23. ACM, Dec. 2023. [Online]. Available:
http://dx.doi.org/10.1145/3603166.3632139

[55] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V.
Papadopoulos, “Hierarchical resource orchestration framework for
real-time containers,” ACM Transactions on Embedded Computing
Systems, vol. 23, no. 1, Jan. 2024.

