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Abstract—This paper tackles the problem of optimum allo-
cation of elastic services on virtualized physical resources by
incorporating a probabilistic approach in terms of availability
guarantees, which allows for reducing the physical computa-
tional resources that are required for elasticity reasons.The
resulting probabilistic optimization problem also allows for
proper trade-offs among business level objectives. Its output
is the set of the admitted services, as well as the allocated
computing capacity for each service component that comprise
the services on the selected physical hosts. The problem was
modeled on the General Algebraic Modeling System (GAMS)
and solved under realistic provider’s settings that demonstrate
the efficiency of the proposed method.
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I. I NTRODUCTION

Admission control has the goal of deciding whether a set
of services can be admitted in a given infrastructure, and
deciding what the optimum allocation of the services to the
available underlying resources is, in case of acceptance. This
task is far from trivial, since in many cases, admitting a new
service increases the risk of already deployed ones failing.
On the other hand, a strict acceptance policy results in an
increased number of rejections, and consequently reduced
revenue.

In the Cloud, each service is considered to be a set
of virtualized components, i.e. Virtual Machines (VMs),
that are activated according to their workflow pattern each
time a user request arrives. At admission control time, the
Infrastructure Provider (IP) must consider not only the basic
requirements but also the extra requirements that may be
added at runtime, defined as elastic requirements. In many
cases, the elastic requirements may be quite large compared
to the basic ones. For example, given a service with a
high variation in the number of users, the VMs that may
be required to be added at runtime may be many times
multiple of the basic ones. Thus, the elastic requirements
play a significant role in the cost of hosting the service, and
the IP has a strong interest in investigating the possibility of
narrowing the resources that need to be booked for elasticity
reasons. At the same time, such an approach may increase
the possibility of deviating from the agreed quality of service
level, and the imposed penalties may as well outgain the
advantages of this approach.

From the IP’s perspective, a proper metric expressing the
goodness of the found allocation is significant of the cost.
However, nowadays an IP’s overall acceptance policy may
include other factors such as the risk of collaborating witha
given Service Provider (SP), and the level of trust between
them, as well as other factors such as how eco-efficient a
given host is [3].

The problem of allocation of real-time distributed tasks
on heterogeneous hosts has been investigated in [5]. In that
paper the focus was on deterministic guarantees in hard real-
time systems, whereas the approach in this paper focuses
on soft real-time services with elastic requirements. Many
works exist that address stochastic real-time systems [9],[2],
[11]. In prior works of ours [4], [8], the problem of optimum
allocation of soft real-time services with probabilistic guar-
antees was tackledby achieving overbooking of the resources
, whereas the present paper focuses on elastic services whose
requirements may dynamically change, depending on the
dynamically varying patterns of the requests and users.

In more detail, the proposed method incorporates the
actual probabilities of requiring extra computational capacity
for the services into the admission control test, thus allowing
for reducing the physical resources that need to be booked
for elasticity reasons. The resulting probabilistic admission
control test also allows for trade-offs among business level
objectives. The output of the optimization problem are the
hosts and the overall computational capacity (basic and
elastic) that is allocated to each component of the services
under examination.

II. PROBLEM DESCRIPTION

In the context of the problem under study, largely inspired
by the OPTIMIS [6] and S(o)OS1 European Projects, an IP
owns physical hosts with potentially heterogeneous charac-
teristics, and establishes Service-Level Agreements (SLAs)
with SPs for hosting distributed services over a period of
time. Each service is composed of components that are
horizontally scalable, i.e. they are capable of distributing
their own work over a number of VMs which can be
deployed on different cores, processors, and hosts.

1More information is available at: http://www.soos-project.eu/.



The IP books a set of physical resources for hosting the
VMs that encapsulate the components. Each component is
characterized by specific computing requirements in terms of
an abstract single-valued performance metric, as explained
in detail in Section II-A. The SP can specify a lower and
an upper limit to the computing requirements of each com-
ponent that correspond to the basic and elastic requirements
that may be needed during runtime, further translated into
basic and elastic VMs. At the first activation, only the basic
VMs participate in the service execution. During runtime and
according to the workload and the policies in place, elastic
VMs may be added, the number of which cannot exceed the
defined limit.

A. Performance Model

In this work, it is assumed that the computing capabilities
of the hosts and the computing requirements of the services
may be expressed in terms of a single performance metric.
For example, across a set of hosts with similar capabilities
in terms of the Instruction-Set Architecture (ISA) of the
CPUs, the computing capabilities may be approximated in
terms of instructions per second that each host can process,
accounting for the different clock speeds and number of
CPUs and available cores. Although, a more precise per-
formance model could consider a vector of metrics, we
assume an ideal model of scalability in which each service
can be arbitrarily decomposed in a number of possibly
imbalanced replicas running over possibly heterogeneous
hosts, and that the whole performance of a service is given
by the native sum of the performance of the decomposed
replicas (thus neglecting the additional workload distribution
and synchronization overheads).

Additionally, each service isassociated with an availability
of overall computing capability ofu and an overall QoS
valueψ per unit of allocated computing capacity. Whenever
the service will find as available an overall computing
capability of x ≤ u, its overall QoS will actually become
ψ · x. Therefore, despite the ideal operational level, with a
resource requirement ofu bringing an overall QoS ofψ ·u,
and given an actual allocation ofx ≤ u, the service will
exhibit an overall QoS ofψ · x ≤ ψ · u.

B. Resources & Services Notation

The IP’s resources are modelled as an interconnection of
potentially heterogeneous networks and computing nodes:

• A set of computing nodes, or hosts:H = {1, . . . , NH} .
• Each hostj ∈ H is characterized by an available

computing capacityUj ∈ P, which expresses the value
of a given system-wide reference performance metric
(see Section II-A).

The following notation is used to refer to services:
• A set of service instances:S = {1, . . . , NS} .
• Each services ∈ S is a workflow ofn(s) components

(encapsulated inside VMs):S(s) ,

{

ξ
(s)
1 , . . . , ξ

(s)

n(s)

}

.

Each componentξ(s)i ∈ S(s) is characterized by the follow-
ing parameters:

• Minimum basic allocationθ(s)i that ξ(s)i needs to per-
form its basic functionality;

• Maximum extra allocationΞ(s)
i , also called elastic

requirements, thatξ(s)i ∈ S(s) may properly exploit;
• Apportioned overall QoS if the service is admittedΨ(s),

and the apportioned extra QoS per unit of allocated
(elastic) computing capacityψ(s)

i .

Note that, with an actual allocation of a service across the
hosts, the resulting overall service QoSQ(s) amounts to:

Q(s) = Ψ(s) +
n(s)
∑

i=1

ψ
(s)
i ·





∑

j∈H

x
(s)
i, j − θ

(s)
i



 . (1)

C. Service Level Agreement Model

The SLA that is established between the IP and the SP
for a given services ∈ S carries the following parameters:

• The computing requirements of each componentξ
(s)
i :

ψ
(s)
i , θ

(s)
i andΞ(s)

i .
• A minimum probabilityφ(s) that there are sufficient

resources for the activation of the VMs when needed.
• A gainG(s) for the IP in case the service is accepted.
• A penaltyP (s) for the IP if the QoS restrictions are

not met.

III. PROBLEM FORMULATION

A. Unknown Variables

First of all, let us introduce the variables (unknown) to be
computed. These are the allocated (both basic and elastic)
computing capacity for the components on the hosts:∀s ∈

S, ∀i ∈ S(s), ∀j ∈ H, x
(s)
i, j ∈ P ⊂ R

+. If a component

ξ
(s)
i is not given any computing capacity on a given hostj,

thenx(s)i, j = 0. A component that is rejected is characterized

by: x(s)i, j = 0, ∀j ∈ H. Note that the actual decomposition
of each service into VMs is a lower-level detail that is not
needed to be addressed in the formulated allocation problem.

In order to allow the possibility of rejecting one or more
services that are being examined at the same time, we
introduce into the problem the derivative Boolean variables
{

x(s)
}

with a value of1 if the whole serviceS(s) is admitted
and 0 otherwise. These can be put in relationship with the
{

x
(s)
i, j

}

allocation variables through a pair of inequality con-
straints that force them to give enough computing capacity
for the basic requirements of each component

{

θ
(s)
i

}

with

x(s) = 1, or alternatively be null withx(s) = 0 (the entire
service is rejected).

B. Allocation Constraints

The problem allocation constraints are the following:



• The maximum allocated computing capacity for each
component should not exceed the limit defined by the
basic plus the elastic computing capacity forξ

(s)
i :

∀s ∈ S , ∀i ∈ S
(s)

,
∑

j∈H

x
(s)
i, j ≤ θ

(s)
i + Ξ

(s)
i . (2)

• The additional load imposed on each host cannot over-
come its residual available computing capacity:

∀j ∈ H,
∑

s∈S

∑

i∈S(s)

x
(s)
i, j ≤ Uj . (3)

C. Probabilistic Horizontal Elasticity

If statistical knowledge about the actual resource re-
quirements experienced at run-time by each component is
known to the IP (e.g. from historical monitoring data of
the service), then this information can be used to tune the
allocation in such a way that the service runs flawlessly
with at least a minimum probabilityφ(s). To this purpose,
let x(s)i =

∑

j∈H
x
(s)
i, j denote the overall computing capacity

for a given component. Assuming that the IP has knowledge
about the cumulative probability functionF (s)

i (·) of the real-
valued random variableX(s)

i representing the computational
capacity that the component may require at runtime, then the
probability that it may use a computing capacity up tox is
F

(s)
i (x) = P

[

X
(s)
i ≤ x

]

.
In order to deal simultaneously with all the components

that comprise the service, we use the joint cumulative
distribution function of all random variablesX(s)

i , ∀i ∈
{

1, . . . , n(s)
}

,F (s)(x1, .., xn(s)). Then, instead of reserving
resources for the maximum elasticity requirements deter-
ministically, it is sufficient to guarantee that the probability
for S(s) to find enough available computing power when
actually required to be higher than a minimumφ(s):

F (s)(x
(s)
1 , . . . , x

(s)
n ) ≥ φ(s). (4)

Note that, ifφ(s) = 1, then the deterministic case is obtained
as a particular case of the probabilistic one.

D. Objective Function

From the IP’s perspective, a metric for the goodness of
an allocation solution may be significant of the additional
costs possibly needed to admit the services. In order to
formalize this, we introduce an extra cost ofζj associated
with turning on a hostj that is unused when the problem is
formulated (j∈ Hoff ⊂ H ), and we also introduce thehj
Boolean variables stating whether or not the hostj ∈ H is
used in the allocation, which can be encoded using thex

(s)
i, j

variables. Then, a simple term to consider in the objective
function is the total additional cost associated to the admitted
reservations:C =

∑

j∈Hoff
hj · ζj . The same reasoning

may be applied to other host or SP-level information that
is available and of importance to the IP, such as the eco-
efficiency of the hosts using mechanisms as in [7].

Additionally, the probabilistic framework, as introduced
in Section III-C implies that with a maximum probability

Table I
HOSTS AND SERVICES CHARACTERISTICS

j ∈ H ζj Uj

j1 - 20

j2 - 18

j3 5 1.5

j4 8 1.0

S s1 s2

G(s) 100 150

P (s) 3 3

φ(s) 0.7 0.8

Ψ(s) 10 10

ψ
(s)
i

1 1

of φ(s) , 1 − φ(s) an admitted service is not expected to
find the resources needed for the extra capacity available,
leading to the necessity to pay the penaltyP (s) back to
the customer. Therefore, for each services ∈ S that is
admitted into the system(x(s) = 1), the expected penalty
due to SLA violationsφ(s)P (s), should be subtracted from
the immediate gainG(s).

Taking into account the contributions due to the overall
QoS brought to the system by the admitted services, to the
expected revenue, and to the additional costs due to the
need of new hosts, we finally obtain the following objective
function:

max
∑

s∈S
x(s)(wG(G(s) − φ(s)P (s))− wCC +wQQ

(s)) (5)

where wG, wC , and wQ are proper coefficients useful
for adapting the heterogeneous quantities in the sum, and
configuring the relative weights of the different factors in
the overall IP’s acceptance policy.

IV. SIMULATION RESULTS

The formalized Mixed-Integer Non-Linear Programming
(MINLP) optimization problemwas modeled on the Gen-
eral Algebraic Modeling System (GAMS) [1], and solved
using the Branch and Reduce Optimization Navigator
(BARON) [10]. The presented results have been obtained
using GAMS v23.3 on Intel (R) dual-core 2.99 GHz pro-
cessor with 2 GB of RAM.

We consider an indicative case study of four hostsH =
{j1, j2, j3, j4}, with the characteristics shown in Table I,
and with two of them being unoccupiedHoff = {j3, j4}.
For simplicity reasons, the CPU cores are considered to
be homogeneous, i.e.Uj = 1.0 refers to a single-core
host, Uj = 2.0 to a dual-core host, etc. The hosts are
connected to the same subnet, and it is further assumed that
the requirements of the services are negligible compared to
the capacity of the underlying network.

Under these settings, we consider two servicesS =
{s1, s2} requesting admission with the parameters shown in
Table II. Both services consist of four componentsS(s) =
{ξ1, ξ2, ξ3, ξ4}. Each component has the same capacity
requirements both for the basic and the elastic requirements:
θ
(s)
i = 1, andΞ

(s)
i = 4. For simplicity and without loss of

generality, we consider that the probability distributions of
the components capacity requirementsxi are independent
and uniformly distributed in the interval[θ(s)i , θ

(s)
i + Ξ

(s)
i ].



Table II
INDICATIVE CASES UNDER EXAMINATION

Case wG wC wQ

I 1 1 0

II 1 1 1

III 1 1 3

Table III
COMPARISON OF DIFFERENT CASES

Case I II III

Unoccupied hosts j3, j4 j4 -
Accepted elastic req. 30 31.5 32

Gain 246.5 245.5 244.5
Solution time (secs) 0.469 0.343 0.344

The values of the parameterφ(s) are less than 1 (see
Table I), and are kept fixed for all cases. This helps in
highlighting the way this flexibility in terms of availability
is regulated by the weights of the different factors in the
objective function. TheΨs andψ(s)

i QoS parameters are also
kept fixed, so that they have no influence on discriminating
which services to admit.

Three indicative cases are examined as presented in Ta-
ble II. In Case I, the weightswG and wC are non-zero,
whereas the QoS weightwQ is set to 0, denoting a profit-
driven IP. According to the BARON output, the optimal
solution allocates all components on the already occupied
hosts {j1, j2}, whereas the accepted elastic requirements
are compressed to the minimum allowed by Equation 4, with
services2 being granted a larger amount sinceφ(s2) > φ(s1).

For Case II in which the QoS weightwQ is increased
to 1 meaning that the IP becomes more sensitive in terms
of the QoS offered to the clients, the optimal allocation
pattern now includes the previously unoccupied hostj3 (the
unoccupied host of the lowest cost), which is now turned
on for hosting more elastic requirements as compared to the
previous case. Further increasingwQ as in Case III, leads
to the acceptance of the maximum elastic requirements and
the second unoccupied hostj4 being turned on as well.

V. CONCLUSIONS

This paper presented a probabilistic admission control
test, which incorporates statistical knowledge about needing
extra elastic requirements for the services, and thus allowing
for reducing the physical computational resources that need
to be booked for elasticity reasons. The proposed model can
be extended to allow for proper trade-offs among high-level
business objectives, depending on their relative importance.
The presented method was modeled on GAMS and solved
under realistic provider’s settings that demonstrate its effec-
tiveness.
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