
1

Optimum Scalability Point for Parallelisable

Real-Time Components
Tommaso Cucinotta

Real-Time Systems Laboratory

Scuola Superiore Sant’Anna

cucinotta@sssup.it

Abstract—Distributing the workload of computationally inten-
sive software components across a set of homogeneous computing
resources (nodes, hosts, processors, cores), for the purpose of
allowing them to meet precise timing (response-time) constraints,
is often a pain due to the difficulties in understanding how
the software will actually scale. Often, such a problem is faced
by recurring to a trial-and-error process. In this paper, a
methodology is introduced to tackle the problem of finding
the optimum number of processors for deploying parallelisable
real-time software components. Basic building blocks of the
methodology are: a generic performance model for the response-
time of a parallel software component; a concrete procedure for
tuning optimally the parameters of the model; the application
of optimisation techniques that allow to compute what is the
minimum allocation needed to meet precise deadline constraints,
as well as the one that minimises the response-time; the con-
sideration of multiple real-time (independent) components to be
deployed on the same multi/many-core hardware.

ACKNOWLEDGEMENTS

I would like to thank: Lutz Schubert from the HLRS of

Stuttgart for having helped me in identifying appropriate re-

lated works for this paper; the European Community’s Seventh

Framework Programme FP7 which funded this research under

grant agreement n.248465 S(o)OS – Service-oriented Operat-

ing Systems; and the anonymous reviewers who contributed

to improve the final revision of this paper.

I. INTRODUCTION AND RELATED WORK

A number of real-time applications have nowadays so

high computing requirements and at the same time so strict

timing constraints that they need to be deployed over multi-

core, and sometimes high-performance computing platforms.

Optimum (high-level) control of robots and complex on-the-fly

transformations of high-definition media, such as required in

systems for video surveillance or video ingesting and editing in

the film post-production industry, constitute possible scenarios

of this kind. However, besides the complex issues behind

parallelising the algorithms and software, system designers

are also faced with the problem of how to optimally tune the

hardware platform so as to deploy this kind of applications

in such a way that their temporal constraints are met, or

also how to optimally assign resources for a multitude of

applications of this kind that will run over the same many-core,

massively parallel and distributed system. In order to properly

face with these issues, it is necessary to model behaviour of

a parallelisable application as a function of the number of

computing elements over which it may be deployed.

Attempts to formalise the performance of parallel software

components highlighting their scalability properties in the

number of processors date back to year 1967, with the well-

known Amdahl law [2], cited many times as a pessimistic

result in the domain of parallel computing due to the upper

bound to the achievable speed-up no matter how many proces-

sors are available. Later, Gustafson tried a reinterpretation [17]

of the law after experimenting with 1024 processors intro-

ducing something called scaled speed-up, claimed to justify

the results apparently opposing to the Amdahl’s argument. In

the end, it turns out that the two formulations were identical,

as shown e.g., by Shi [25], who also stressed on the role

played by an algorithm own complexity in the data size,

when evaluating parallel speed-ups. Indeed, Shi underlined

that these speed-up models are valid only if the algorithm

is structure-persistent, i.e., its parallel version has the same

number of computing steps as the sequential one (for example,

a quadratic sort would break this rule and turn out to possess

a super linear speed-up). Back on the claimed pessimism of

the Amdahl’s law, it turns out that actually there was even too

much optimism therein, as the fundamental overheads due to

distribution, synchronisation and communication among the

parallel parts of the code had been completely neglected.

Therefore, many authors introduced an additional term in

the execution time formula, having a linear (or sometimes

quadratic) dependency on the number of processors [8],

[29]. The immediate consequence of this, as nicely argued

by Brown [8], [27], is that increasing a parallel software

performance requires a careful evaluation not only of the

number of processors that we may add to the platform, but

also of the possibilities in enhancing communications (e.g.,

switching to higher performance network adapters), so as

to reduce the impact of one of the most important factors

limiting scalability. Another interesting variation proposed

by Sun and Ni [27] is the one to not limit the speed-up

model to consider merely completely sequential or completely

parallelisable code sections. Instead, it is possible to consider

that various segments in the code may scale well only up

to a segment-specific maximum number of processors. Also,

Turek et al. [28] investigated on how to minimise the average

response-time of a set of parallelisable tasks.

An interesting point made by various authors, e.g., [27],

concerns the distinction between the classical speed-up factor,



2

measured at equal work to be done between the parallel and

sequential version of a software and the time-bounded speed-

up measured at equal available processing time (a memory-

bounded speed-up may be found as well). The latter barely

recalls the problems investigated in the domain of multi core

real-time systems, where the interest is in how to make a piece

of software respect a given deadline constraint.

Li and Malek [22] actually tackled the problem of mini-

mum and optimum processors assignment to a parallelisable

real-time application under linear communication overheads,

accounting for both a sequential and a parallel model of

communications. Such a model is among the ones considered

in the present paper, so some of their original results are

recalled later (useful for the difference in notation). However,

more models for the distribution overheads are considered in

this paper, and the presented methodology may generically

deal with additional models as well.

Other works tried to model the behaviour of parallel com-

puting systems to the purpose of studying the performance

of parallel algorithms implemented on top of it. One of the

classical models is the Parallel Random-Access Machine by

Fortune and Willie [15] (PRAM), which left space for various

extensions, for example to cope with communication and

contention overheads in distributed or multi-processor systems.

For example, the LogP approach by Culler et al. [13] properly

includes in the machine model the communication latency and

bandwidth. Also, there exists recent work investigating on the

trade-offs between achievable speed-up, computing power of

heterogeneous cores in multi-core chips, and design costs for

realising them, such as the one by Hill and Marty [18].

There is a wide literature in the real-time community on

scheduling tasks on multi-processor and multi-core platforms,

e.g., [3], [6], [4], [5], [7], [11], [21], [26], [23], [20], [24] just

to mention a few. These works focused mostly on algorithms

for temporal scheduling and schedulability analysis techniques

for distributed real-time task models with mostly a static

structure (i.e., where the number of tasks to deploy and

their characteristic is known and fixed). Some of these works

addressed specifically the problem of allocation of real-time

applications in a distributed environment [14], [19], [23], but

not with a variable parallelism degree for the applications.

Also, many authors focused on the optimum and adaptive

allocation options for real-time tasks [9], [12], [1], [10], [16],

but usually with a focus on the best scheduling parameters of

a single real-time task, rather than the number of processing

units over which it may be parallelised. Adaptive techniques

for on-line setting of the parallelism degree have been em-

ployed also in the domain of parallel computing [29], and the

results from this work might integrate in an adaptive policy

as well, if the execution times of the model are continuously

estimated/refined on-line instead of being profiled ahead of

time. For space reasons, further related works cannot be

mentioned.

II. APPROACH

A. Assumptions

For the sake of simplicity, in the following it is assumed

that a number of homogeneous computing elements H =

{1, . . . , NH} are available for deploying a set of distributed

real-time applications. Each computing element might be a

host, a processor in a multi-processor machine, or a core

in a multi-core machine. Without loss of generality, these

terms will be used interchangeably from here on. Clearly,

these different options correspond to different programming

paradigms exploitable by developers to code the interactions

(synchronisation and communication) among the concurrently

executing parts of an algorithm. However, in this paper the

impact of these interactions on the performance of the appli-

cation, and specifically on its response-time, is modelled in a

general and abstract way which may be equally representative

of all of the mentioned cases. Also, the discussion that follows

fits optimally when the considered set of computing elements

not only is homogeneous, but also the latencies across the

elements are homogeneous. For example, if the computing

units under consideration reside all in separate hosts belonging

to the same subnet, or if they are all different cores of the

same multi-core machine. In case one wanted to consider

both of these cases, a rough approximation is the one in

which the communication penalties due to the faster links are

approximated (roughly) as equal to the ones due to the slowest

links. In the future, this work might be extended to consider

more thoroughly this problem.

B. Parallel Performance Model

Consider a set of parallelisable real-time software compo-

nents (or applications) A = {1, . . . , NA} . Each application

a ∈ A is characterised by the following response-time model,

when deployed over x ∈ N dedicated identical processors:

Ra(x) =
Pa

x
+ Sa +Oa(x), (1)

where Pa ∈ R
+ is the ideally perfectly parallelisable part of

its computation time (scaling with the number of processing

units), Sa ∈ R
+ is the sequential, non-parallelisable part of it

and Oa(x) is the additional penalty in the execution time to

be paid for overheads due to the additional communications

among the distributed parts of the component, including dis-

tribution and results joining overheads, assumed to be a non-

decreasing function of the number of units over which the

workload is distributed, beyond the first one (i.e., Oa(1) = 0).
Note that Sa

Sa+Pa
is the fraction of the original sequential

computation that is assumed to not be parallelisable. From

here on, whenever the discussion refers to a single application

a ∈ A, its index will be omitted for notational convenience.

Two basic communication overhead models are considered

in this paper: linear and logarithmic overheads.

1) Linear Communications Overheads: For the well-known

linear model we haveO(x) = K(x−1), withK constant, thus:

R(x) =
P

x
+ S +K(x− 1). (2)

Figure 1(a) graphically depicts various R(x) curves obtained

at varying values of the communication overhead K, and Fig-

ure 1(b) reports the corresponding relative speed-up, defined

as the ratio between the response-time with 1 processor and the



3

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

R
e
s
p
o
n
s
e
 T

im
e

Number of processors

K=0.0

K=0.1

K=0.2

K=0.3

K=0.4

K=0.5

K=0.6
Minimum response times

Deadline
Theoretical minimum response times

Actual minimum response times
Theoretical minimum x satisfying R(x)<=D

Actual minimum x satisfying R(x)<=D

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

S
p
e
e
d
u
p

Number of processors

K=0.0

K=0.1

K=0.2

K=0.3
K=0.4
K=0.5
K=0.6

(b)

Figure 1. Response times (a) and speed-up (b) corresponding to the model
in Equation (1), as a function of the parallelism degree x (along the X axis),
with P = 8 and S = 2 (i.e., a non-parallelisable factor of 20%) and at various
values of K (corresponding to the different curves). The top figure reports
also the curve identifying the minimum response-times and corresponding
parallelism degree as from Equation (8) and a sample deadline of D = 4.

one with x processors. With K = 0 the well-known Amdahl’s

Law [2] is obtained: as x → ∞, the response time keeps

decreasing towards S (and the speed-up increases towards

1 + Pa/Sa). However, for K > 0, there exists a maximum

number of processors (corresponding to the points marked in

the picture with plus signs) beyond which the response time

starts increasing again (and the speed-up starts decreasing),

due to the communication overheads in Equation (1) that starts

dominating the other terms, bringing R(x)→∞ as x→∞.
Also, each application is assumed to be associated with a

timing constraint, i.e., its maximum allowed response time:

R(x) ≤ D. Clearly, the focus of the paper is on the need for

deploying a software component on a number of processors

strictly greater than 1, in order to be able to meet such

constraint. For example, in Figure 1(a) it can be clearly

seen that, in order to meet the R(x) ≤ D = 5 deadline

constraint, at least 3 processors would be needed if K ≤ 0.1,
however at least 4 would be needed if K ∈ [0.2, 0.3],
and finally respecting the deadline becomes impossible for

K ≥ 0.4. Additionally, the focus of the investigation is on

the impact of the communication and distribution overhead

K over the software performance, thus K is assumed to be

strictly positive. Therefore, in the discussion that follows, these

conditions will be implicitly satisfied, unless otherwise stated

(this allows us to skip a few border-line cases of little interest):

S ≤ D < R(1) ≡ P + S ∧ K > 0. (3)

a) Parallelism Degree: Now the problem of deciding a

proper parallelism degree for the application is formalised and

solved. Specifically, two sub-problems are considered:

• find the minimum parallelism degree by which a given

response-time constraintD for the application is satisfied;

• find the optimum parallelism degree by which the ob-

tained response-time is minimised.

In what follows, the two problems are tackled separately, then

a possible integration of both of them in a general method-

ology for deploying a set of scalable real-time applications is

addressed in Section II-D.

b) Minimum Parallelism Degree: Given the notation and

assumptions introduced above, we can now state the following:

Proposition 1. A necessary condition for the existence of a

number of processors x ∈ N allowing the application to meet

a given response-time constraint D is:

D ≥ S −K + 2
√
KP (4)

Also, if such a number exists, then its minimum value is:

x
(min) =









D − (S −K)−
√

[D − (S −K)]2 − 4KP

2K









(5)

Finally, a sufficient condition for x(min) to exist (thus allowing

the application to respect its timing constraint) is:

D ≥ S −K + 2
√
KP

√

1 +
K

4P
(6)

Proof: This result can easily be obtained by studying the

inequality R(x) ≤ D:

P

x
+ S +K(x− 1) ≤ D (7)

that can easily be stated in terms of a second order inequality:

Kx2− [D − (S −K)]x+P ≤ 0. In this case, it is easy to see

that, if the left side of this inequality has no real zeros (i.e.,

Equation (4) if violated), then no solution can exist. Now, it

is easy to verify that x̃ =
D−(S−K)−

√
[D−(S−K)]2−4KP

2K is

the minimum real zero of Inequality (7). However, we are

searching for a parallelism degree that has an integer value,

thus either we are lucky and x̃ ∈ N thus x(min) = ⌈x̃⌉ = x̃,
or (more likely) x̃ /∈ N. Then, we must round it up, but there

are two cases: ⌈x̃⌉ is lower than or equal to the other zero,

thus such value still respects the deadline constraint, or ⌈x̃⌉ is
higher than the other zero and the problem has no solutions.

Imposing that the distance between the two real solutions be

greater than or equal to 1, i.e., Equation (6), ensures that at

least one integer exists in the interval, and x(min) = ⌈x̃⌉ is
the minimum among such integers.

c) Optimum Performance Parallelism Degree: While the

minimum parallelism degree x(min) as stated in Equation (5)

is sufficient for satisfying the response-time constraint D,
if additional resources are available, then it may be worth

to investigate on up to which point it is convenient to pull

additional resources for deploying the real-time application.

Indeed, one of the consequences of the response-time model

under consideration as stated in Equation (1) is that, for

x → ∞, the response-time goes to infinity as well (under

the assumption that K is strictly positive).

The problem of finding the parallelism degree achieving

the maximum performance (i.e., minimum response-time)

can be conveniently investigated by minimising the obtained

response-time in Equation (1) along the x variable.



4

Proposition 2. The minimum response-time achievable by

parallelising the application under the model in Equation (1),

which exists only if K > 0, is bounded by:

R(min) ≥ S −K + 2
√
KP

and it is achieved by the following number of processors:

x(opt) =















⌊
√

P
K

⌋

if R
(⌊

√

P
K

⌋)

≤ R
(⌈

√

P
K

⌉)

⌈
√

P
K

⌉

otherwise.

(8)

Proof: It is easy to verify the statement imposing that

the derivative in x of Equation (1) be null, that leads to

x̃ =
√

P
K
. It is also straightforward to verify that such point

corresponds to a minimum of the function. The x̃ values

and their corresponding response-times are highlighted in

Figure 1(a) by means of plus signs. However, we are faced

with the problem of choosing a proper integer x(opt) value

as close as possible to x̃, minimising the response-time. The

only way to discriminate among the two integers ⌊x̃⌋ and ⌈x̃⌉
is to compare the result of Equation (1) in correspondence of

the two values, with a preference for the lowest x in case of

parity. The obtained x(opt) are shown in Figure 1(a) by means

of small circles.

Note that the x̃ formulation is equivalent to the one found by

Li and Malek as appearing in Equation (9) of [22]. However,

the surrounding arguments constitute still an interesting view

on the problem, especially when considering the achievable

optimum point between the minimum allocation of Equa-

tion (5) and the optimum one of Equation (8), in view of

a multitude of applications to host on the available resources,

as shown in Section II-D.

2) Logarithmic Communications Model: In certain parallel

algorithms it may be possible to properly design the communi-

cations among the processors for distribution, synchronisation

and results collection in such a way that they impact only

logarithmically on the overall execution time. This is possible,

for example, if the physical topology is arranged hierarchically

and the workload distribution pattern exploits the topology

so as to maximise the parallel communications during the

distribution, aggregation and execution phases. For example, a

balanced tree of computations may be properly set-up, so that

communications for status updates among the nodes may be

done concurrently, and in such a way that parent nodes may

aggregate the received information from the children, resulting

in an overall communication overhead that grows with the

tree depth, i.e., logarithmically with the number of involved

processors, i.e.:

R(x) =
P

x
+ S +H log x (9)

Figure 2 depicts graphically this model, along with the sig-

nificant points, similarly to what done for the linear overhead

case. Now, we can state the following:

Proposition 3. The minimum response-time achievable under

the overhead model in Equation (9) is bounded by:

R(opt) ≥ H + S +H log
P

H
.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

R
e
s
p
o
n
s
e
 T

im
e

Number of processors

H=0
H=0.1
H=0.2
H=0.3
H=0.4
H=0.5
H=0.6

Theoretical min. response times
Deadline

Theoretical min. response times
Actual min. response times

Theoretical min. x satisfying R(x)<=D
Actual min. x satisfying R(x)<=D

Figure 2. Response times corresponding to the model in Equation (9), as a
function of the parallelism degree x (along the X axis), with P = 8, S = 2,

D = 3.5, and at varying values for H (corresponding to the various curves).

The allocation that achieves the minimum response-time is:

x(opt) =











⌊

P
H

⌋

if R
(⌊

P
H

⌋)

≤ R
(⌈

P
H

⌉)

⌈

P
H

⌉

otherwise.

(10)

Proof: This is easily obtained by computing the point of

null derivative of Equation (9).

Proposition 4. The minimum allocation x(min) that respects

the deadline, if it exists, can be found by the following

recursive equation:
{

x0 = P
2H

xi+1 = P
D−S−H log xi

i = 0, 1, . . .
(11)

then setting x(min) = ⌈limi→∞ xi⌉ , where from a practical

standpoint the recursion can be stopped as soon as xi is

detected to be converging, i.e.: |xi+1 − xi| is lower than a

desired precision threshold.

Proof: Imposing that R(x) = D results unfortunately in

a transcendental equation whose solution amounts to finding

the fixed point of x = P
D−S−H log x

. For example, this can be

approximated with the mentioned method.

Note that the optimum and minimum allocation points high-

lighted in Figure 2 have been obtained with the above formula

and recursive algorithm (stopping after 4 steps), respectively.

However, the exact conditions under which the recursive

Equation (11) converges deserve to be exactly identified.

C. Model Fitting

It is interesting to investigate on how we may optimally tune

the model parameters P, S, K and H as needed in the models

introduced above. The models in Equations (2) and (9) fall in

the general class of linear combination of arbitrary functions

R(x) =
∑n

i=1 aifi(x), thus it is sufficient to perform vari-

ous measurements with different number of processors then

minimise the average square error by solving a system of

linear equations. The procedure is widely known, however it

is recalled in what follows for the sake of completeness.

Assume to have available k measurements of the response-

time rj obtained with xj processors (j = 1, . . . , k). The

parameters {ai}ni=1 can be found as the ones minimising

the average square relative error between the response times

obtained from the model and the actually measured values:

E = 1
k

∑k

j=1

(
∑n

h=1 ahfh(xj)−rj
rj

)2

. Considering the relative



5

 1

 10

 100

 4  8  12  16  20  24  28  32  36  40  44  48

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Number of processors

Real data
Optimised model

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-5 -4 -3 -2 -1  0  1  2  3  4  5

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Relative error (%)

Relative error CDF

(b)

Figure 3. Results obtained after optimising the model in Equation (2) for
pbzip2 while compressing the Linux kernel sources. The model response
times are compared with the real data in (a), whilst the cumulative distribution
over the relative error after the optimisation is shown in (b).

error allows for avoiding polarisation of the optimisation

towards the fewer cores measurements, which exhibit higher

response times. Searching for the point of null gradient (with

respect to the {ai} variables) leads to ∂E
∂ai

= 0 ⇐⇒
∑n

h=1

[

∑k
j=1

fh(xj)fi(xj)
rj

]

ah =
∑k

j=1 fi(xj), which is a

linear system with n unknowns and n equations that can easily

be solved. Note that at least k ≥ n independent measures (i.e.,

corresponding to different processors numbers) are needed in

order for the system to have a unique solution. If more readings

are available for the same parallelism degree x, all of them can

be included in the above system coefficients, so as to enhance

the precision of the model.

For example, running the just described procedure for

modelling the execution times of pbzip21 while compressing

the Linux kernel sources (with a compression level of 9)

over a Dell PowerEdge R815 server equipped with 4 AMD

Opteron 6100 processors (for a total of 48 cores) leads to the

results shown in Figure 3. Figure 3(a) reports the originally

gathered data versus the ones interpolated through the model.

Figure 3(b) shows the cumulative distribution of the relative

error over the collected samples, highlighting that it resides

for 90% of the cases between +/-2%.

D. Deploying Multiple Applications

In the above sections, a single parallelisable real-time ap-

plication was modelled and its optimum deployment options

analysed in isolation. When dealing with multiple applications

of this kind (with heterogeneous parameters) to be deployed

over a set of available physical resources, a means is needed

to perform an optimum deployment of the applications.

To this purpose, consider a set of NA applications to be

deployed over NH computing units. As mentioned above,

looking at the resource allocation xa for each individual

1More information is available at: http://compression.ca/pbzip2/.

application, the minimum value that is needed in order to

meet the response-time constraint is dictated by Equation (5),

and the maximum value beyond which the performance starts

to degrade is stated in Equation (8). Furthermore, the total

availability of resourcesNA needs to be considered. Therefore,

the following set of constraints is obtained:










xa ≥ x
(min)
a

xa ≤ x
(opt)
a

∑NA

a=1 xa ≤ NH .

(12)

A solution to this problem may easily be found by con-
struction. First, the problem has no admissible solutions if
there are not enough resources for the minimum allocations,

thus NH ≥
∑NA

a=1 x
(min)
a must hold true. Then, the residual

available resources NH −
∑

a∈A
x
(min)
a may be distributed in

a number of ways, for example with a linear redistribution
giving more resources to components that are further away
from their optimal response-time point, such as:

x̂a = x
(min)
a +

(

NH −

NA
∑

a=1

x
(min)
a

)

x
(opt)
a − x

(min)
a

∑NA
b=1

(

x
(opt)
b − x

(min)
b

) .

(13)

However, the just computed values {x̂a}a∈A
still suffer of two

potential problems:

1) they may represent an infeasible solution, i.e., they

represent an excessive allocation that goes beyond the

optimum point for the components x̂a > x
(opt)
a ∀a (if

this happens, then it happens for all the components); in

such a case, it is sufficient to set xa = x
(opt)
a ∀a.

2) they may be non-integers. Therefore, some of them will

have to be rounded up, others rounded down, so as

to achieve the final allocation. Note that, due to the

constraints posed on the problem, rounding down all the

values leads to an admissible solution.

In the latter case, an algorithm achieving the final allocations

{x̂a} may be, for example, the following:

1) set A = A and NH equal to the number of processors;

2) set H ← NH −
∑

a∈A x
(min)
a and ∀a ∈ A, x̂a ←

x
(min)
a +H

x(opt)
a −x(min)

a
∑

b∈A

(

x
(opt)
b

−x
(min)
b

) ;

3) choose a ∈ A for rounding down its allocation: x̂a ←
⌊x̂a⌋ ;

4) update NH and A according to: NH ← NH − x̂a and

A← A\ {a} ;
5) repeat from step 2 until A = ∅.

At step 3, any criterion may be chosen to select the next com-

ponent whose allocation will be rounded down. For example,

the first element (or a random element) in the A set may be

chosen, or the component that looses the least in terms of

response-time may be chosen, i.e., a s.t. |Ra(x̂a)−Ra (⌊x̂a⌋)|
is minimum. Note also that, at step 2, the re-computation of

the residual available hosts as well as the x̂a values after

having finalised the allocation for each component allows for

accounting for all the unallocated residuals due to rounding

from the previous steps, so that the final allocation will result

in
∑

a∈A
xa ≥ NH − 1.

Considering a generic example with 2 components, the

allocation problem can be graphically depicted, as shown



6

Figure 4. Visualisation of the allocation problem for two components.

in Figure 4. The allocation variables xa and xb vary along

the X and Y axes of the figure, respectively. The graph

shows the 45° line going from up-left towards bottom-right

delimiting the pairs achieving saturation of the available hosts

xa+xb = NH . Also, the two schedulability regions for the two

applications, xa ∈ [x
(min)
a , x

(opt)
a ] and xb ∈ [x

(min)
b , x

(opt)
b ],

are visible. The intersection of these three areas is highlighted

in grey, showing the set of all the admissible solutions to

the problem. As highlighted by the black arrow, choosing a

solution close to the point identified in Equation (13) amounts

to move linearly from the (xa, xb) = (x
(min)
a , x

(min)
b )

point towards the (xa, xb) = (x
(opt)
a , x

(opt)
a ) point, till the

intersection with the saturation constraints. Only pairs with

integer coordinates, shown as points of the visible grid, are

the admissible solutions. Therefore, it is not possible to use

the (xa, xb) = (x̂a, x̂b) solution, but we need to choose one

of the grid points on the saturation constraint line closest to

it, marked through small circles on the graph).

III. CONCLUSIONS AND FUTURE WORK

In this paper, a comprehensive methodology for optimum

tuning of the number of processors to allocate to a set of

parallelisable real-time components has been presented. This

may constitute a valuable receipt for practitioners approaching

this kind of problems. Apart from recalling (and slightly refin-

ing) a few results already known from the past, a logarithmic

overhead model was introduced that is suitable for very scal-

able software components, and its preliminary characteristics

sketched out. Various directions for future work on the topic

have been highlighted throughout the document. However,

looking at future many-core platforms embodying Network-

on-a-Chip architectures, one of the toughest challenges is the

one to incorporate in this kind of models the interferences due

to the overlapping paths of the communications among cores,

as well as between the cores and the main memory elements.

REFERENCES

[1] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli. QoS
management through adaptive reservations. Real-Time Systems Journal,
29(2-3):131–155, March 2005.

[2] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,

1967, spring joint computer conference, AFIPS ’67 (Spring), pages 483–
485, New York, NY, USA, 1967. ACM.

[3] T. P. Baker and S. K. Baruah. Sustainable multiprocessor scheduling of
sporadic task systems. In Proc. 21st Euromicro Conf. Real-Time Systems

ECRTS ’09, pages 141–150, 2009.

[4] S. Baruah. Task partitioning upon heterogeneous multiprocessor plat-
forms. In Proc. 10th IEEE Real-Time and Embedded Technology and

Applications Symp RTAS 2004, pages 536–543, 2004.
[5] S. Baruah and J. Goossens. The edf scheduling of sporadic task systems

on uniform multiprocessors. In Proc. Real-Time Systems Symp, 2008.
[6] S. Baruah and G. Lipari. Executing aperiodic jobs in a multiprocessor

constant-bandwidth server implementation. In Proc. 16th Euromicro

Conf. Real-Time Systems ECRTS 2004, pages 109–116, 2004.
[7] E. Bini, G. Buttazzo, and M. Bertogna. The multi supply function

abstraction for multiprocessors. In Proc. 15th IEEE Int. Conf. Embedded

and Real-Time Computing Systems and Applications RTCSA ’09, pages
294–302, 2009.

[8] R. G. Brown. Maximizing beowulf performance. In in Proc. of the 4th

Annual Linux Showcase and Conference, 2000.
[9] G. Buttazzo, E. Bini, and Yifan Wu. Partitioning real-time applications

over multicore reservations. 7(2):302–315, 2011.
[10] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive

rate control. In Proceedings of the IEEE Real-Time Systems Symposium,
RTSS ’98, pages 286–, Washington, DC, USA, 1998.

[11] J.-J. Chen, C.-Y Yang, T.-W. Kuo, and C.-S. Shih. Energy-efficient real-
time task scheduling in multiprocessor dvs systems. In Proc. Asia and

South Pacific Design Automation Conf. ASP-DAC ’07, 2007.
[12] T. Cucinotta, F. Checconi, L. Abeni, and L. Palopoli. Self-tuning

schedulers for legacy real-time applications. In Proceedings of the

5th European Conference on Computer Systems (Eurosys 2010), Paris,
France, April 2010. European chapter of the ACM SIGOPS.

[13] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. Logp: towards a realistic model of
parallel computation. SIGPLAN Not., 28:1–12, July 1993.

[14] A. Davare, Qi Zhu, M. Di Natale, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli. Period optimization for hard real-time
distributed automotive systems. In Proc. of DAC’07, San Diego,
California, USA, June 2007.

[15] S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proc. of the tenth annual ACM symposium on Theory of computing,
STOC ’78, pages 114–118, New York, NY, USA, 1978. ACM.

[16] R. Guerrra and G. Fohler. A gravitational task model for target
sensitive real-time applications. In Real-Time Systems, 2008. ECRTS

’08. Euromicro Conference on, pages 309 –317, july 2008.
[17] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31:532–

533, May 1988.
[18] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.

Computer, 41(7):33–38, 2008.
[19] K. Konstanteli, T. Cucinotta, and T. Varvarigou. Optimum allocation

of distributed service workflows with probabilistic real-time guarantees.
Springer Service Oriented Computing and Applications, 4(4), Oct 2010.

[20] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In Real-

Time Systems Symposium, 2009, RTSS 2009. 30th IEEE, dec. 2009.
[21] H. Leontyev, S. Chakraborty, and J. H. Anderson. Multiprocessor

extensions to real-time calculus. In Proc. 30th IEEE Real-Time Systems

Symp. RTSS 2009, pages 410–421, 2009.
[22] X. Li and M. Malek. Analysis of speedup and communica-

tion/computation ratio in multiprocessor systems. In Proc. Real-Time

Systems Symp., pages 282–288, 1988.
[23] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time

systems on multi-cores with shared resources. In Proc. 23rd Euromicro

Conf. Real-Time Systems (ECRTS), pages 251–261, 2011.
[24] K. Ramamritham, J. A. Stankovic, and P. F. Shiah. Efficient scheduling

algorithms for real-time multiprocessor systems. IEEE Trans. Parallel

Distrib. Syst., 1:184–194, April 1990.
[25] Yuan Shi. Reevaluating amdahl’s law and gustafson’s law.

http://www.cis.temple.edu/ shi/docs/amdahl/amdahl.html, October 1990.
[26] A. Srinivasan, P. Holman, J. H. Anderson, and S. Baruah. The case for

fair multiprocessor scheduling. In Proc. Int. Parallel and Distributed

Processing Symp, 2003.
[27] X.-H. Sun and L. M. Ni. Another view on parallel speedup. In Proc.

Supercomputing ’90, pages 324–333, 1990.
[28] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu. Scheduling

parallel tasks to minimize average response time. In Proceedings of the

fifth annual ACM-SIAM symposium on Discrete algorithms, SODA ’94,
pages 112–121, Philadelphia, PA, USA, 1994. Society for Industrial and
Applied Mathematics.

[29] Otilia Werner-Kytölä and Walter F. Tichy. Self-tuning parallelism. In
Proceedings of the 8th International Conference on High-Performance

Computing and Networking, HPCN Europe 2000, pages 300–312, Lon-
don, UK, 2000. Springer-Verlag.


