
On the use of Linux Real-Time Features for

RAN Packet Processing in Cloud Environments

Luca Abeni1, Tommaso Cucinotta1, Balázs Pinczel2, Péter Mátray2, Murali
Krishna Srinivasan2, and Tobias Lindquist2

1 Scuola Superiore Sant’Anna, Pisa, Italy
{luca.abeni,tommaso.cucinotta}@santannapisa.it

2 Ericsson {balazs.pinczel,peter.matray}@ericsson.com
{murali.krishna.xk.srinivasan,tobias.lindquist}@ericsson.com

Abstract. This paper shows how to use a Linux-based operating system
as a real-time processing platform for low-latency and predictable packet
processing in cloudified radio-access network (cRAN) scenarios. This use-
case exhibits challenging end-to-end processing latencies, in the order of
milliseconds for the most time-critical layers of the stack. A significant
portion of the variability and instability in the observed end-to-end per-
formance in this domain is due to the power saving capabilities of mod-
ern CPUs, often in contrast with the low-latency and high-performance
requirements of this type of applications. We discuss how to properly
configure the system for this scenario, and evaluate the proposed config-
uration on a synthetic application designed to mimic the behavior and
computational requirements of typical software components implement-
ing baseband processing in production environments.

1 Introduction

Networking infrastructures are experiencing a huge paradigm shift, with an ever-
increasing need to support, among others, mobile scenarios with higher and
higher performance requirements, both in terms of networking bandwidth and
of predictable or ultra-low latency. This requires a great degree of flexibility and
adaptation in the management of physical resources, where a number of lessons
learnt from the domain of cloud computing are being applied in the context of
networking infrastructures. For example, this is witnessed by the recent rise of
network function virtualization (NFV) [3, 4] (often coupled with software-defined
networking (SDN) [9]).

A NFV infrastructure hosts a number of Virtualized Network Functions
(VNFs) that need to process packets with low latency. In 5G mobile scenar-
ios, this latency has to be controlled even in the milliseconds-scale, to support
properly ultra-reliable low-latency communications (URLLC) [2, 7], one of the
key characteristics of 5G architectures enabling mobile communications in mod-
ern and future use-cases in such areas as industrial manufacturing and factory
automation, robotics and automotive. For example, individual VNF components
hosted in an NFV infrastructure may sometimes have available a “budget” in



2 L. Abeni et al.

terms of processing latency [6] that can become as little as 1ms, which is the case
of baseband packet processing, the use-case we focus on in the present paper.

One of the advantages of applying cloud principles to NFV infrastructures,
is the ability to host a diverse set of workloads with heterogeneous requirements
within a shared physical infrastructure. This is a geo-distributed and multi-
site data center equipped with flexible storage solutions and general-purpose
servers, where different VNF components are often co-located on the same phys-
ical servers in the form of virtual machines or containers.

However, due to the strict timing requirements of the scenarios mentioned
above, it is of paramount importance to be able to guarantee that the end-to-
end performance of hosted applications is not impaired by: a) the virtualization
layer, often used to achieve the needed flexibility in management of the physical
resources throughout the NFV infrastructure; b) the temporal interferences due
to the co-location of multiple VNF components onto the same servers.

The second problem is well-known and often referred to as the “noisy neigh-
bour” problem. It is generally tackled in both general cloud and NFV infras-
tructures by recurring to a number of custom configurations of the virtualized
or containerized environment for hosting guests, typically by [10]: disabling over-
provisioning in the virtual to physical CPU allocation, and applying a static map-
ping among them (core pinning); similarly, disabling memory over-commitment
and dynamic allocation (ballooning); deploying data-intensive components with
greater risks of interference in different NUMA nodes, so to minimize the in-
terferences among their data paths in the hierarchical memory subsystem, i.e.,
preventing contention at the L2-cache access and memory-controller levels; dis-
abling hyperthreading. However, some of these configurations (such as, for ex-
ample, disabling hyperthreading) are not recommended in cloud environments
because they end up decreasing the CPU throughput and the possibility to run
multiple applications on the cloud nodes.

This paper provides an experimental evaluation of the impact of various hard-
ware and OS tuning features mentioned above.We focus on an industrial use-case
scenario tied to low-latency packet processing for 5G/URLLC, namely baseband
packet processing. The results show that with careful tuning of the hardware and
software configuration it is possible to remove most of the sources of interference
and tail-latency (making it possible to host such an application with the required
level of time-predictability) without compromising the CPU throughput and the
performance of other applications running in the cloud. While previous works [5]
disabled features like hyperthreading to achieve more predictable response times,
this work shows how hyperthreading can be left enabled without compromising
the real-time performance of the baseband software.

2 Scheduling the BaseBand Application

In RAN packet processing, multiple frequencies of the available spectrum are
used to handle communications, where the time is divided into Transmission



RAN Packet Processing in Cloud Environments 3

Input

uplink2

uplink1

uplinkn−1

uplinkn

scheduler

downlink2

downlink1

downlinkn−1

downlinkn

Output

.
.
.

.
.
.

Fig. 1. Model of the baseband application as a DAG.

Time Intervals (TTIs) all having the same duration. In each TTI, data is received
by the various radio cells, and new data is prepared to be transmitted to them.

The baseband software considered as a test-case for this work is designed to
serve n cells and is a multi-threaded application, described by the directed acyclic
graph (DAG) shown in Figure 1. This is composed of: an I/O thread, responsible
for communications with the remote radio units (“Input” and “Output” nodes
in the figure); n uplink threads processing data received from one of the cells;
a scheduler thread, coordinating the use of the spectrum and time slots within
each TTI; n downlink threads preparing data to be sent to one of the cells. In
practice, there is an uplink thread and a downlink thread per cell.

For the sake of simplicity, assume that the I/O thread periodically activates
all the uplink threads at the beginning of each TTI. After executing for some
time, each uplink thread sends an activation to the scheduler thread and then
blocks until the beginning of the next TTI (next activation from the I/O thread).
After receiving an activation from all the n uplink threads, the scheduler thread
wakes up, executes for some time, and then activates all the downlink threads. If
the end of the TTI arrives before all the uplink threads sent an activation to the
scheduler thread, a timeout fires and the scheduler thread is activated anyway.
Each downlink thread, after being activated by the scheduler thread, executes
for some time and then terminates; all the n downlink threads should terminate
before the end of the period.

Hence, we measure an end-to-end response time from the activation of the
first uplink thread to the termination of the last downlink thread. This end-
to-end response time should be smaller than an end-to-end relative deadline
D which is equal to the TTI duration. If such a deadline is seldom missed,
then higher-layer protocols can recover by re-transmits, but if this occurs too
frequently, then the transmissions degrade in quality or even fail. Looking at
Figure 1, we can see that if Cul, Csched, and Cdl are the WCETs (worst case exe-
cution times) of the uplink, scheduler and downlink threads, then the maximum
end-to-end response time, equal to the longest path from I/O to the downlink
termination (maximum makespan of the DAG), is Cul + Csched + Cdl. So, the
parallel task will respect the deadline D if Cul + Csched + Cdl ≤ D. This re-
sponse time can be obtained by scheduling all the threads as soon as they are



4 L. Abeni et al.

activated, and using n CPU cores (a core sequentially executes an uplink thread,
the scheduler thread and a downlink thread, the other n − 1 cores execute an
uplink thread and a downlink thread). Hence, the end-to-end response time can
be minimized by having only one active real-time thread per core, avoiding tem-
poral scheduling; in this case, a SCHED FIFO scheduling policy is considered to be
the best option to run this application: if each thread is assigned the maximum
real-time priority, then it is scheduled as soon as it activates, as required. More
advanced scheduling policies such as SCHED DEADLINE [8, 1] could be useful when
the CPU scheduler has to schedule multiple real-time threads on the same CPU
core, or when it is necessary to limit the fraction of CPU time consumed by a
real-time application. Pinning real-time threads to specific CPU cores can be
useful to avoid migrations and reduce the scheduling overheads, or to cope with
the unpredictabilities caused by hyperthreading, as shown in Section 3.

When there are no uplink/scheduler timeouts, the scheduler executes only
after all the uplink threads are finished, and the downlink threads execute only
after the scheduler thread is finished; so, if the total end-to-end time is smaller
than 1 TTI, then this property is respected using n cores only. If an uplink thread
takes more than 1 TTI (scheduler timeout) or the total end-to-end response time
is larger than 1 TTI (uplink threads are activated while downlink threads are
still active), then 2n cores could potentially be needed.

For certain scenarios, a typical pattern of execution times could look like
the following: the execution times of the uplink threads are generally shorter
than 500µs (except for a few rare outliers), the execution times of the scheduler
thread are generally smaller than 100µs, and the execution times of the downlink
threads are generally smaller than 300µs. However, there are a few sources of
non-determinism causing fluctuations in these numbers, i.e., radio link quality,
channel coding, cell load, and others. Assuming Cul = 500µs, Csched = 100µs,
and Cdl = 300µs, we have Cul + Csched + Cdl = 900µs, so a TTI of 1ms can be
supported using n CPU cores.

If, instead, execution times distributions with longer tails are assumed, then
2n CPU cores might be needed.

3 CPU Configuration

The goal of this work is to run a virtual baseband application on a large server
based on multiple Intel x86 CPUs with a large number of cores. These modern
CPUs are designed to maximize the average performance/throughput and reduce
power consumption by using various mechanisms. The three most important
ones are Dynamic Voltage and Frequency Scaling (DVFS), CPU idle states,
and hyperthreading. In particular, DVFS and idle states allow reducing power
consumption when the server is not fully loaded, while hyperthreading allows
doubling the number of logical CPU cores seen by applications.

The hyperthreading technology allows the OS kernel to see a single CPU core
(referred to as hardware core in the following) as two siblings (also referred to
as logical cores or hardware threads). This means that if a CPU is composed of



RAN Packet Processing in Cloud Environments 5

n hardware cores the OS can use 2n siblings to schedule the application tasks.
Technically, this result is achieved by duplicating the hardware resources that
store the state of each core (such as the CPU registers). Other hardware resources
such as the ALU, the caches, and similar, instead, are not duplicated and are
shared by the siblings executing on the same physical core. The two siblings
executing on the same physical core risk competing for the execution resources
that are not duplicated; hence, running an application on a sibling can slow
down the execution of applications on the other one. This makes the execution
unpredictable, and this is why hyperthreading is often disabled when real-time
performance and determinism are important.

When a CPU is idle (it has no tasks to execute), some hardware components
can be turned off to save some energy. Modern CPUs allow to achieve this result
by entering different idle states ; for example, Intel CPUs can be in different “C-
states” (named, C0, C1, etc...). Increasing the state number, a C-state is said to
be “deeper”, stops more hardware components, and allows saving more energy.
Returning from an idle state to C0 takes some time, which increases with the
state number (deeper C-states have longer exit and entry latencies). This is why
modern operating system kernels such as Linux allow disabling some (or all)
of the idle states. When all the idle states are disabled and a CPU is idle, it
executes a busy loop in the idle task.

In Intel CPUs, C-states are per physical core (so, a hardware thread cannot
enter an idle state if the other sibling of the physical core is executing machine in-
structions), however, Linux allows disabling C-states for individual logical cores.
When a sibling is idle and can enter an idle state, it is stopped (so, a single
sibling remains active on the physical core) but the C-state of the physical core
does not change until its other sibling also needs to enter an idle state.

Finally, the DVFS mechanism allows lowering the working frequency of CPU
cores (and consequently the voltage at which the CPU is driven) to save some
energy. Obviously, the frequency of a core should be reduced when the core is
not fully loaded. Generally, the OS is responsible for selecting the most appro-
priate working frequency for the various CPU cores, based on an estimation of
the system workload or on some constraints imposed by the applications run-
ning in the system. The various frequency/voltage configurations supported by a
CPU are often known as Operating Performance Points (OPP) or Power States
(P-states); even if in modern Intel CPUs the P-state concept is more advanced
than a simple frequency/voltage configuration, the Linux kernel internally maps
P-states to CPU frequencies, making it possible to give the CPU hints regard-
ing the frequencies at which its cores should work. Obviously, when the DVFS
mechanism is active the CPU speed becomes less predictable: even if the fre-
quency scaling algorithm is configured to always select the maximum possible
speed when a real-time task is active, the time needed to switch frequency can
negatively affect the real-time performance. This is why DVFS is generally dis-
abled (and the CPU is driven at an almost constant frequency — even disabling
mechanisms such as the “turbo mode”) when real-time performances need to be
guaranteed.



6 L. Abeni et al.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

r (ms)

P
{
re
sp

o
n
se

ti
m
e
<

r
}

Default CPU configuration

Fixed frequency

No hyperthreading

No idle states

Fixed frequency, no idle states

No idle states, no hyperthreading

Fixed frequency, no hyperthreading

Real-Time CPU configuration

Fig. 2. CDF of the end-to-end response time with deterministic execution times and
various CPU configurations.

As mentioned, the general guidelines for executing real-time applications on
modern CPUs recommend to disable frequency scaling, idle states and hyper-
threading. Some preliminary results (see below) confirm that with this configu-
ration (named “Real-Time CPU” configuration in the following) the CPU can
support deterministic execution of the baseband real-time application. However,
in a cloud environment it would be useful to keep hyperthreading enabled, to
give more CPU time to non-real-time applications running in background.

To experiment with various possible hardware and software configurations
using a deterministic and reproducible real-time workload, we implemented a
synthetic application that, from a task scheduling perspective, behaves similarly
to a softwarized baseband software (same number of threads and synchroniza-
tion among them), but allows users to control the execution times of the various
threads. Basically, the synthetic application reproduces the thread synchroniza-
tion used by the real baseband software, but the various threads consume CPU
time by executing busy loops instead of decoding/encoding the radio signal (the
loop counters are calibrated so that each thread executes for the desired amount
of time). All the tests have been performed on a server equipped with a dual In-
tel(R) Xeon(R) CPU E5-2640 v4 running at 2.40GHz (having 10 physical cores
per CPU; with hyperthreading enabled there are 40 siblings).

First of all, we tested various CPU configurations with the synthetic ap-
plication configured for 2 cells (2 uplink threads and 2 downlink threads) and
deterministic execution times Cul = 500µs, Csched = 100µs, and Cdl = 300µs.
Figure 2 reports the Cumulative Distribution Function (CDF) of the end-to-end
response times measured with different CPU configurations ranging from the
“Default CPU” configuration (DVFS, turbo mode, idle states and hyperthread-



RAN Packet Processing in Cloud Environments 7

ing are enabled) to the “Real-Time CPU” configuration (DVFS, turbo mode,
idle states and hyperthreading are all disabled).

Looking at the figure, there are some interesting results to be noticed. First
of all, it can be seen that the “Real-Time CPU” configuration works as expected,
and the response times are always very close to the theoretical value of 900µs
(the CDF plots the probability to measure an end-to-end response time smaller
than the value r on the x-axis, hence an almost vertical line indicates almost
deterministic response times). Another interesting fact to be noticed is that the
“Fixed Frequency no idle states” configuration also exhibits deterministic re-
sponse times, but they are larger than the theoretical value (around 1350µs
instead of 900µs). All the other plots show a much larger execution-time varia-
tion, and the result changes from run to run, while the “Real-Time CPU” and
“Fixed Frequency no idle states” configurations generate reproducible results.

Another interesting thing to be noticed in the figure is the “No idle states”
curve, which looks strange since it shows that disabling the CPU idle states
increase the response times and make them less deterministic. This strange be-
haviour can be explained by noticing that this configuration disables all the
idle states (C-states deeper than C0) for all the CPUs seen by the Linux kernel
(which, in this case, are logical cores). In this configuration, all the idle siblings
will execute a busy loop in the idle task. Hence, if the real-time application is
executing on the first sibling of a physical core and the second sibling of such
physical core is idle, then the real-time application will experience the interfer-
ence of the idle loop running on the second sibling!

This also explains the increased response times incurred when using the
“Fixed frequency no idle state” configuration. To address this issue, idle states

should be disabled only on the logical cores executing real-time applications (in
this way, when the other sibling is idle, it is stopped and does not interfere with
the execution of the real-time application). To do this, the real-time application
has to be pinned to a limited number of siblings (so that it is possible to know
in advance on which siblings the real-time application will execute and to dis-
able idle states only on them). This configuration will be referred to as “Fixed
frequency no idle states on RT cores” in the following.

Of course, the “Fixed frequency no idle states on RT cores” configuration
can improve the real-time performance when some cores are idle, but does not
offer significant advantages when all the logical cores are heavily loaded. To
get good real-time performance in this situation (without resorting to disabling
hyperthreading completely) it would be necessary to make sure that while a
real-time thread is executing on a sibling nothing is scheduled on the second
sibling of its physical core. This result can be achieved by using a functionality
that has been recently introduced in the Linux kernel, named Core Scheduling3.

With Core Scheduling it is possible to assign “cookies” to threads, and the
kernel CPU scheduler will make sure that only tasks with the same cookie exe-
cutes simultaneously on the same physical core (so, if a thread with cookie C is

3 https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/core-
scheduling.html



8 L. Abeni et al.

1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

r (ms)

P
{
re
sp

o
n
se

ti
m
e
<

r
}

Default

FF

FF-NoIdle

FF-NoIdleRT

RT

Fig. 3. CDF of the end-to-end response time with deterministic execution times.

executing on the first sibling of a physical core, then only threads with cookie C

can execute on the second sibling — if no other thread with cookie C is ready
for execution, the second sibling is left idle).

Although Core Scheduling has been originally developed to address security
issues (mitigating hardware bugs such as L1TF4), it can be used to increase the
predictability of real-time applications. By assigning unique cookies to the real-
time threads (and leaving non-real-time threads with no cookies), it is possible
to make sure that real-time threads do not share their physical cores with any
application (and hence do not suffer of any interference due to hyperthreading).
This configuration will be named “Core Scheduling” in the following.

4 Experimental Results

An extensive set of experiments has been performed on the server described in
Section 3 to evaluate the previously discussed configurations and the effectiveness
of the core scheduling mechanism.

Figure 3 reports the CDFs of the end-to-end response times for the most
stable CPU configurations when the threads execution times are assumed to
be deterministic (and equal to the worst-case values). For the sake of simplic-
ity, from now on “FF” represents the “Fixed Frequency” CPU configuration,
“FF-NoIdle” represents the “Fixed frequency, no idle states” configuration, and
“FF-NoIdleRT” represents the “Fixed frequency, no idle states on RT cores”

4 https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html



RAN Packet Processing in Cloud Environments 9

Table 1. Summary of the naming used for various CPU configurations.

Name Description

Default DVFS, turbo mode, idle states and hyperthreading enabled

FF Fixed Frequency (DVFS and turbo mode disabled)

FF-NoIdle
Fixed Frequency, no idle states (DVFS, turbo mode and idle
states disabled)

FF-NoIdleRT
Fixed Frequency, no idle states on RT cores (DVFS and turbo
mode disabled, idle states disabled only on the cores where
the real-time threads execute)

Core

Core scheduling (as above, but core scheduling is used to
ensure that when a real-time thread executes on a physical
core, no other thread can execute on the other sibling of the
physical core)

RT
Real-Time CPU configuration (DVFS, turbo mode, idle
states and hyperthreading disabled)

configuration (Table 1 summarizes these symbols). In this experiment, the base-
band software is the only application running in the server, which is otherwise
idle, hence most of the response times are lower respect to Figure 2. As al-
ready noticed in Section 3, the Real-Time CPU configuration is very effective
in providing deterministic response times near to the theoretical value of 900µs.
“FF-NoIdle” also results in deterministic response times, but introduces an ad-
ditional delay due to the interference of the idle loop with the siblings where the
real-time threads are executing. Notice that the “RT” and “FF-NoIdle” curves
are identical to the ones of Figure 2, confirming the determinism of these config-
urations. “FF-NoIdleRT” reduces the response times of “FF-NoIdle” by pinning
the real-time threads on siblings 0 and 2, and disabling the CPU idle states only
on these two siblings (as previously described).

The experiment has also been repeated using randomly-distributed execution
times for the real-time threads, instead of considering their worst-case values (see
Figure 4). To account for some outliers executing for more than the expected
WCETs, the probability distributions of the execution times5 have some tails
larger than Cul, Csched and Cdl (hence, the average execution times are smaller
than in the previous experiments while the maximum execution times are larger
— although very infrequent).

When the system is loaded with some background non-real-time applications,
things look more interesting and both “FF” and “FF-NoIdleRT” result in re-
sponse times comparable with the “FF-NoIdle” configuration (so, not good for
real-time). This is where core scheduling can help. To investigate this setup,
we executed some more experiments pinning the real-time threads to siblings 0
and 2 and running a CPU-intensive application on siblings 20 and 22 (the two

5 In this case, gaussian distributions have been used for the sake of simplicity.



10 L. Abeni et al.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

r (ms)

P
{
re
sp

o
n
se

ti
m
e
<

r
}

FF

FF-NoIdle

FF-NoIdleRT

Core

RT

Fig. 4. CDF of the end-to-end response time with gaussian execution times and no
additional load.

Table 2. CPU throughput for non-real-time applications running in background.

ffmpeg4 ffmpeg2 Prime4 Prime2

FixFreq 1496 (100%) 897 (100%) 84794 (100%) 69091 (99.9%)
No idle states 1001 (61.9%) 853 (95%) 70390 (83%) 69102 (100%)
No idle on RT cores 1253 (83.7%) 886 (98.7%) 78168 (92.2%) 69084 (99.9%)
Core Scheduling 1195 (80%) 837 (93.3%) 76117 (89.7%) 67780 (98%)
Real-Time CPU 917 (61.3%) 789 (88%) 61882 (72.9%) 58417 (84.5%)

hardware threads sharing physical cores with siblings 0 and 2). We selected two
different CPU-intensive applications to run in background: a synthetic bench-
mark using n threads to compute prime numbers and a more realistic application
transcoding some audio and video in background (using ffmpeg). The results are
reported in Figure 5 and show that the “RT” and the “Core” configuration result
in very similar response times (which are basically identical to the ones shown
in Figure 4). All the other configurations result in large response times due to
the interference of the non-real-time application caused by hyperthreading.

To evaluate the “cost” of this isolation Table 2 reports the total number of
frames transcoded by the ffmpeg instance or the total number of prime num-
bers found by the synthetic application. Two different setups have been tested:
non-real-time application scheduled on siblings 0, 2, 20 and 22 (indicated as
“Prime2” and “ffmpeg2”) or scheduled on siblings 4, 6, 20 and 22 (indicated
as “Prime4” and “ffmpeg4”). Notice how core scheduling allows to find a good



RAN Packet Processing in Cloud Environments 11

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

r (ms)

P
{
re
sp

o
n
se

ti
m
e
<

r
}

FF

FF-NoIdle

FF-NoIdleRT

Core

RT

Fig. 5. CDF of the end-to-end response time with gaussian execution times and non-
real-time load in background.

trade-off between real-time and non-real-time performance, increasing the CPU
throughput respect to the Real-Time configuration without compromising real-
time performance.

5 Conclusions

This paper evaluated the performance of a cloud node when serving a cRAN
application characterized by strict temporal constraints. While the current ap-
proach to cloudify this kind of baseband applications relies on disabling hyper-
threading and reducing the CPU time left to other applications running in the
cloud, this paper showed how it is possible to find a reasonable trade-off between
real-time performance and cloud throughput without disabling hyperthreading,
by properly using advanced kernel features such as Core Scheduling.

As a future work, we will investigate scalability issues and power consump-
tion. In this regard, some preliminary results seem to indicate that core schedul-
ing allows to find a good trade-off between real-time performance and power con-
sumption. We also plan to take advantage of more advanced scheduling policies,
such as SCHED DEADLINE, to reduce the number of CPU cores used by real-time
threads and to host multiple real-time applications on the same node.

References

1. Abeni, L., Balsini, A., Cucinotta, T.: Container-based real-time scheduling in the
linux kernel. SIGBED Review 16(3), 33–38 (October 2019)



12 L. Abeni et al.

2. Ericsson: 5G wireless access: an overview – Ericsson White Paper 1/28423-
FGB1010937 (Apr 2020)

3. ETSI: Network Functions Virtualisation – Introductory White Paper –
An Introduction, Benefits, Enablers, Challenges & Call for Action. Tech.
rep., SDN and Openflow World Congress, Darmstadt, Germany (2012),
https://portal.etsi.org/nfv/nfv white paper.pdf

4. ETSI: Network Functions Virtualisation (NFV) – Update White Pa-
per – Network Operator Perspectives on Industry Progress. Tech.
rep., SDN and Openflow World Congress, Frankfurt, Germany (2013),
http://portal.etsi.org/nfv/nfv white paper2.pdf

5. Foukas, X., Radunovic, B.: Concordia: Teaching the 5g vran to share compute.
In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference. p. 580–596. SIG-
COMM ’21, Association for Computing Machinery, New York, NY, USA (2021)

6. Giannone, F., Gupta, H., Kondepu, K., Manicone, D., Franklin, A., Castoldi, P.,
Valcarenghi, L.: Impact of ran virtualization on fronthaul latency budget: An ex-
perimental evaluation. In: IEEE Globecom Workshops. pp. 1–5 (Dec 2017)

7. Le, T.K., Salim, U., Kaltenberger, F.: An overview of physical layer design for
ultra-reliable low-latency communications in 3gpp releases 15, 16, and 17. IEEE
Access 9, 433–444 (2021). https://doi.org/10.1109/ACCESS.2020.3046773

8. Lelli, J., Scordino, C., Abeni, L., Faggioli, D.: Deadline scheduling in the linux
kernel. Software: Practice and Experience 46(6), 821–839 (2016)

9. Open Networking Foundation (ONF): ONF SDN Evolution. ONF TR-535,
ONF (2016), http://www.opennetworking.org/wp-content/uploads/2013/05/TR-
535 ONF SDN Evolution.pdf

10. Suchánek, M., Navrátil, M., Bailey, L., Boyle, C.: Performance Tun-
ing Guide – Monitoring and optimizing subsystem throughput in
RHEL 7 (Aug 2021), https://access.redhat.com/documentation/en-
us/red hat enterprise linux/7/html/performance tuning guide/index


