Pitfalls and misconceptions in component-oriented approaches
for real-time embedded systems: lessons learned and solutions

Marco Panunzio and Tullio Vardanega
University of Padova, Department of Pure and Applied Mathematics
via Trieste 63, 35121 Padova, Italy
{panunzio, tullio.vardanega} @math.unipd.it

Abstract—When the task befalls you to devise a novel
component-oriented approach for real-time embedded systems
you first dutifully undertake a thorough scrutiny of the import
and pitfalls of previous attempts. This is what we have done
for the last couple of years, in the context of an initiative
promoted by the European Space Agency for the creation of a
component model to serve the development of new-generation
on-board software. In this paper we recapitulate the lessons
we learned in that effort.

I. INTRODUCTION

The development of real-time embedded systems has
recently shown an evident surge of attention for ap-
proaches centered on Component-Based Software Engineer-
ing (CBSE) [1] and Model-Driven Engineering (MDE) [2].

The CBSE paradigm has potential for fostering better
software design and for improving the software fitness for
reuse. MDE makes it possible to raise the abstraction level
of the development process and use automation capabilities
to generate lower-level artifacts, such as analysis models,
documentation and (part of) the implementation code. The
marriage of the two arguably sounds like a jolly good news.
Their joint application should in fact earn the development
of real-time embedded systems the increased productivity
and shorter time to market that are the promised land of
software industry.

Unfortunately, such a brave undertaking is far from obvi-
ous in our target domain, and its relative successes are still
too few to motivate massive adoption.

In the last few years, we were involved in an investigation
promoted by the European Space Agency (ESA) aimed
to the conception and realization of a software reference
architecture for use in future on-board software. In previous
work, cf. e.g., [3], we elaborated on the key ingredients of
the approach we are developing in that context. One of those
central ingredients, and one of special interest to this paper,
is the component model, which permits to create the software
design as an assembly of software components.

The essential elements of the above approach are also
being investigated and assessed in the CHESS project (cf. the
acknowledgments), an international R&D project targeting
space, telecommunication, railway systems and investigating
the applicability of its results also to the automotive domain.

Our investigation for the component model [4] largely
benefited from the feedback obtained from those two distinct
contexts of application. The richness of horizon also permit-
ted an extensive scrutiny of previous initiatives with possibly
similar characteristics and ambitions. In that evaluation we
were able to discern some, if not all, of the most successful
traits and the most critical pitfalls of previous approaches. In
this paper we elaborate on these findings and illustrate where
our approach differs in positive from its predecessors.

Two concepts are central to component-oriented develop-
ment: the component; and, separately, the component model.

There are various interpretations of these concepts; cf.
e.g. [1] or [5]. The acceptation given to those concepts, and
their realization in practice, largely influence the goodness of
the approach, the fulfillment of all the application needs of
interest, and ultimately, the opportunities for software reuse.

The distinguishing feature of our approach consists in
permeating the whole development with the principle of
separation of concerns [6]. We are in fact convinced that
components shall encompass exclusively functional concerns
and be void of any extra-functional concern.

The component is a unit of encapsulation, which exposes
in an interface a set of cohesive functional services offered
to the system and declares the functional services it requires
(from other components or the environment) to operate
correctly. The component explicitly declares any extra-
functional need or requirements (e.g periodic execution with
a certain period, needed resources) in terms of annotations
to its functional interface. However, the source code of the
component comprises exclusively sequential code; the extra-
functional annotations on the component specification are
used by the design environment to automatically generate
software entities that realize those extra-functional needs.
The nature of components enables their reuse under different
extra-functional requirements, hence it increases their reuse
potential.

The component model is the framework that defines: the
form and attributes of components; the rules for their com-
position and packaging; the specification of extra-functional
annotations and the deterministic rules for the automated
generation of the implementation entities that realize the
declared extra-functional annotations; the architectural de-

scription, which we argue should be made in terms of
design views, each being a partial representation of the
system focused on limited concerns and tailored for use by
a specialized development actor.

The remainder of the paper is organized as follow: in
section II we enumerate the most important lessons we
learned on the definition of a component-oriented approach
targeting real-time embedded systems; in section III we
recapitulate the key elements of our component model by
tracing our design choices to the lesson learned; finally in
section IV we draw some conclusions.

II. LESSONS LEARNED
A. On the overall design process

1) The component model defines a design flow: The
notional purpose of a component model is to permit the
creation of a whole software system as a composition of
software components. In actual fact, however, the component
model does more than that. Not only does it prescribe
the syntactic rules to create design entities and the way
to relate them to one another, but — whether intentionally
or implicitly, in any case inevitably — it also establishes a
defined design flow.

The design flow comprises a series of steps that must
be followed to create components, assemble them and ulti-
mately produce the software system. It may also determine
a set of precedence relations between those steps.

For example, a component model may require that compo-
nents are enclosed in platform-dependent wrappers in order
to execute them on a specific target platform. In that case it
follows that the creation of at least some basic representation
of the hardware topology and allocation of components to
target processing units are preconditions to code generation.

This implies that the developers of the component model
shall pay careful attention to ensuring that the design flow
promoted by their approach is compatible with the develop-
ment process in use with the concerned industrial domain.

2) Do not force a development direction: Software design
proceeds in one of three possible directions: top-down;
bottom-up; some combination of them. A general evaluation
of the virtues and limitations of those directions is not
very useful, as the goodness of one’s choice is highly
dependent on the specific context of application. We can
however reason on when those directions are more likely
to be chosen: top-down development is likely to occur
when components are specified for the first time (as top-
down reasoning helps to master the design complexity); in
contrast, bottom-up development is likely to prevail when
reuse of components enters the picture.

Similarly to the design flow, a component model may
well promote a given development direction, perhaps even
actively. Problems arise however when active promotion of
one direction causes active opposition to another.

An example may help illustrate the point: some research
in connectors theory (e.g., “exogenous composition” for “en-
capsulated components” [7]) very strongly promotes bottom-
up development. That can be acceptable for some application
domains or some specific development cases, but it can cause
serious inconveniences if applied to other domains where
the development practice has historically and conveniently
settled to top down.

B. On component definition

1) Lack of abstraction: One of the most interesting and
qualifying aspects of a component model is the level of
abstraction of its design entities. It is important to understand
that the user space of the component model is above all the
realm of the software architect. The primary goal of the
software architect is to direct the software design in accord
with the methodological principles of the chosen software
architecture. Hence the component model shall provide a
view of the software (and partly of the system) at a level of
abstraction that corresponds with that goal. This implies that
the level of specification required to the component model is
most definitely not the implementation level: the component
model shall not pollute the design view with implementation
artifacts like threads, semaphores, and such like.

Detailed design, low-level details and implementation
concerns (like allocation to threads, selection of task priori-
ties, etc.) are by all means outside of the primary concerns
of the component model. That does not mean of course that
the component model shall simply ignore those aspects. We
contend instead that the implicit design flow of the compo-
nent model shall ensure that all these concerns appear later
in the development, when they become the right subject of
attention. Furthermore those concerns should be addressed
through the component model and maintained in a syntactic
structure that is either directly amenable to static analysis
or otherwise easily transformable in the input formalism for
the chosen analysis tool.

Finally, the implementation aspects addressed through the
component model shall be faithfully (i.e., in a semantically
consistent manner) reflected in the implementation: this is
so much easier if the design environment caters for them by
way of automated code generation.

2) Stateless components: Some component models allow
the creation of exclusively stateless components (for exam-
ple, the TASTE toolchain [8] developed at ESA).

That component model in fact does not permit to specify
at design level the attributes (i.e., typed parameters) of
the component, which collectively form the state of the
component. The state of the component is thus relegated
to the algorithmic code of the component implementation.
In that manner however the component model is unable to
represent that information in the design specification.

This is a very constraining choice, as it avails no means
to: (i) control component configuration directly in the de-

sign space; (ii) understand which provided services of the
component access which part of the state (i.e., the typed
parameters, through getter and setter operations), so as to
identify which subsets of the state should be protected under
mutual exclusion, if any.

The difference between managing issue (ii) from within
the design space and doing so only at implementation level
is crucial. In the former case it is in fact possible to generate
from the design specification an analysis/implementation
view which correctly describes all the synchronization mech-
anisms that need to be employed (semaphores, protected
objects, etc.). Hence a valid input for schedulability analysis
can be derived from it. In the latter case, instead, the
component can only be viewed as a single monolithic state.
This pushes the use of mutual exclusion on the complete
execution of all the services provided by the component. The
net consequence of which is poor responsiveness at system
level owing to the excessive blocking time induced by the
blind recourse of mutual exclusion protocols.

3) Software interfaces vs. typed ports: Different ap-
proaches exist to expose the provided and required ser-
vices of a component. The two predominant solutions are
(software) interfaces and typed ports. In the former case
the component provides (respectively requires) one or more
interfaces. Each interface gathers a set of functionally cohe-
sive operations that can be used to access the component.
An interface can be specified using the syntax of a pro-
gramming language, or (as in the majority of cases) with a
dedicated Interface Definition Language (IDL). Examples of
the IDL solution can be found in Koala [9], Robocop [10]
or LightweightCCM (a conformance point of the CORBA
Component Model) [11]. In essence, the component model
provides a concrete realization of all the provided interfaces.
In the alternate approach, a component exposes just a set of
typed ports, as done in, e.g., ProCom [12], BIP [13] and
TASTE [8].

Although syntactic means to group ports in some compos-
ite entity may exist, the radical difference between the two
approaches stands: (software) interfaces exist independently
of the component; more precisely, their creation precedes
the specification of components. Ports do not.

The approach with software interfaces possibly incurs
more design complexity, but it owes its greater advantages
to its better fit for object-orientation. In fact, software
interfaces can be extended (using some interface refinement
mechanism) to create new interfaces that are subtypes of a
base interface. This is very useful to manage the evolution
of a system by reducing the effort to substitute or update
components (a required interface can be bound to a provided
interface of another component on the condition that it is a
valid subtype) and to update the component bindings both
in the design specification and in the implementation.

C. On the design language

1) The design language is not the component model: A
fundamental distinction must be drawn between what is the
component model and what is the design language that is
used to create components.

The design of the component model (component features
like ports, attributes, component bindings, deployment and
extra-functional concerns, etc.) precedes and is disjoint from
the actual language that is later used to specify the compo-
nents in the user space.

When the time comes to define the design language for
the component, there always is at least one default solution:
to create a domain-specific language that exactly mirrors the
definition of the component model.

Alternatively, the developer of the component model may
try to express it using a standard modeling language for
real-time embedded systems. Example languages include the
UML MARTE profile [14] or AADL [15].

Choosing a standard language as the specification lan-
guage of the component model can earn strategic advan-
tages: the standard status of the language can encourage tool
vendors to invest in the creation of design environments for
it. In that case, the component model would leverage the
tooling, thereby dispensing with the burden of developing an
ad-hoc design environment from scratch. Furthermore, it is
quite likely that the developers of tools for specialized analy-
sis (e.g., schedulability analysis, fault-tree analysis, etc.) may
converge over time to a common reference language that per-
mits them to feed their tools with the information extracted
directly from standard representations of the system model
at hand. In this case, the component model developers are no
longer required to create syntactic and semantic mappings
to the input formalisms of each of the needed or desired
analysis tools.

Of course, the component model developers must be able
to fully express all the features and traits of their compo-
nent model with the standard language, whether directly or
using its extension mechanisms, as for example with UML
stereotypes or AADL property sets.

When trying to reconcile with the pre-existing structure
of the modeling language, two situations may occur. In one,
the chosen language is able to fully express the component
model, because its expressive power covers a superset of the
needed features. In the other instead, the chosen language
is not expressive enough and thus the mapping fails. The
situation is depicted in figure 1.

In any case, the designer of the component model should
tailor the chosen design language so that it only expresses
what is necessary for the component model and avoids the
confusion and overhead stemming from the expressive power
in excess.

Language X

Language Y

Figure 1. A component model has always a corresponding domain-specific
language able to fully express it. Language X can express a superset of the
necessary concepts, and it is able to fully express the component model.
That is not true, for language Y, which lacks the expressive power for all
the concepts of interest.

D. On extra-functional concerns and analysis

1) First design a component model and only later think
about extra-functional concerns and analysis: The compo-
nent model is not completely independent of extra-functional
and analysis concerns [3].

Designing a component-oriented approach without con-
sidering those aspects from the outset can lead to several
inconsistencies, infeasible implementation and costly correc-
tions to the approach, as patently shown by the development
of the AUTOSAR initiative [16].

The key argument here is that a component model for real-
time systems makes sense and serves its purpose solely if it
always leads to an analyzable implementation. It therefore
is the body of the chosen analysis theory that dictates the
spectrum of the admissible implementations.

Two implications stem from this observation. Firstly,
when some theories assume questionable simplifications to
ease the mathematical solution of the problem, they narrow
the admissible form of the implementation to the extent that
it may be considered poor and uninteresting. An example
of those simplifications is the infamous assumption of task
independence, which defeats even the simplest producer-
consumer collaboration pattern.

Secondly, the analysis space coincides with the level of
the implementation. For this reason, the component model
shall ensure that analysis concerns are accurately reflected
at the higher level of component abstraction. It shall then be
possible to syntactically express (or derive) at component
level all the information to create input for the analysis.

2) Plain schedulability analysis is not enough: Real-
time software is subject to verification to ascertain that it
fulfills all the timing requirements. To fulfill that obligation,
some form of schedulability analysis is performed on some
description of the software implementation.

In recent years, a number of independent projects demon-
strated that it is feasible to generate the input for schedulabil-
ity analysis from a component description. Notable examples
include: SaveCCM [17], which is able to translate the design
specification into an equivalent representation expressed

User model
2 fe—0 |
components
automated
generation
Analysis /| implementation model

-

Threads, protected resources, efc..

Figure 2. The user model and the analysis model correspond to different
abstraction levels. The approach shall be able to generate a meaningful
analysis model from the information specified at the user level.

as timed automata with tasks, and perform response time
analysis on it; AdaCCM [18], which permits to decorate the
component description with metadata that are used to create
the input for the MAST analysis tool [19], which implements
analysis equations of the response time analysis strand, up
to offset-based analysis with precedence constraints [20].

This is indeed an interesting achievement, which demon-
strates that it is possible to feed schedulability analysis with
information specified or derived from the abstraction level of
the user space (where component are described), as opposed
to the abstraction level of the analysis (which applies to
implementation entities like tasks and the like) [21].

If the overall approach warrants that the architectural and
semantic assumptions of the analysis are conveyed to and
preserved in the implementation, and the execution platform
guarantees the preservation of the resulting properties, then
the design specification can factually be considered as a
faithful representation of the software at run time.

To close the loop, it is however necessary to back prop-
agate to the user space (i.e., as attributes that decorate
the design specification) the results of the analysis, in a
simplified form of model-based round-trip analysis. In this
way, the designer can directly appreciate the results of the
analysis as a complementary information of the compo-
nent specification. Iterations of the analysis then become
just a matter of changing attribute setting in components;
which can be repeated until the designer is satisfied by
the predictions on the timing behavior of the system under
development.

Unfortunately, while this shows the feasibility of a value-
added contribution to the goodness of the development
process, it still does not earn us as much advantage with
regard to the quality of the results of the analysis.

In point of fact, simple (or worse, simple-minded) support
for schedulability analysis is not enough for real-scale sys-
tems. The problem used to be with the pessimism incurred
by the analysis equations, but this is no longer so thanks to
the constant advancement of the theory. The problem rather
consists in the generation of the worst-case scenario, single
or multiple that they may be.

The adopted analysis theory specifies the conditions that
determine the theoretical worst-case scenario for the system

and the rules to statically determine it, using the information
given as input for the analysis.

However, as it is well known, the worst-case scenario
may never occur during system execution, and so for two
reasons. First because the system may not incur at the same
moment all the adverse conditions that determine the worst-
case scenario (e.g., all the tasks executing for their worst-
case execution time); secondly, because perhaps the overall
system cannot incur the theoretical worst-case scenario for
some logical conditions (for example, two sporadic tasks that
cannot be activated at the same time or as frequently as their
minimum inter-arrival time, due to some logical condition
that it was not possible to extract statically from the design).
The former situation is not interesting, because the analyzed
system can still reach the worst-case condition. The latter
instead is caused by our inability to supply the analysis with
sufficiently accurate information to understand that it has to
prune the worst-case scenario from conditions that can be
excluded a priori.

The situation is even worse when we want to develop
a system with several multi-moded applications (each de-
signed in the form of a component or an assembly of
components): each application will behave differently with
regard to functional needs, timing behavior and resource
needs, in accord with the current mode of operation. In
this case, with a plain application of schedulability analysis,
the worst-case scenario for the analysis would be generated
with the joint occurrence of the worst-case scenario of each
application. It is quite plausible that the system cannot even
forcedly reach that condition, which is just generating so
much pessimism that the analysis may incorrectly report the
system as infeasible.

To remedy this situation, we must strive to support
scenario-based analysis. The designer thus shall: (i) have the
means to relax the formulation of the worst-case scenario,
whenever they know that the theoretical worst-case scenario
of the system can never be reached; (ii) be able to command
the calculation of the worst-case scenario as the composition
of the right set of local analysis scenarios.

Prescription (i) is similar to what is commonly applied in
static timing analysis: a tool may not be able to statically
determine the maximum number of iterations of one loop,
and the user manually annotates the correct loop bound,
which is then used to perform the analysis. For prescription
(ii), the designer (if interested in reducing the pessimism
of the analysis) shall be able to associate a local analysis
scenario to at least every operational mode of an application,
and be guided in the composition of multiple local scenarios
to create the real worst-case scenario for the system.

It is clear that both prescriptions shift the responsibility of
formulating the worst-case scenario from the theory to the
designer. In particular, with prescription (i) we may incur
unsafe analysis scenarios. with prescription (ii) conversely,
if the designer omits the specification of a local analysis

scenario, the global worst-case scenario may be built off an
incomplete set of local analysis scenarios. The generation
of a global analysis scenario from a set of locally defined
scenarios (even if unrelated to operational modes) is inves-
tigated for example in the Robocop component model [10].

In spite of those concerns however, scenario-based anal-
ysis may be a worth direction to pursue in those domains
where predictability and efficient use of the available re-
sources matter.

3) Separation between the specification of functional/
algorithmic concerns and extra-functional concerns: We
maintain that a component model for real-time embedded
systems ought to enforce strict separation of concerns be-
tween the functional/algorithmic concerns and all extra-
functional concerns [4]. Concurrency and real-time concerns
should be dealt with by component wrappers generated
around the component. Interaction concerns are dealt with
by connectors.

Separation of concerns shall be enforced: (i) in the design
process through the use of “design views”, in line with what
is advocated by ISO 42010/IEEE 1471 [22]; (ii) at syntactic
level in the specification language for the component; (iii)
in the implementation, by careful allocation of the extra-
functional concerns exclusively to the automatically gener-
ated code for the component wrappers and connectors.

Components that encompass only sequential code can
be immediately reused under a variety of extra-functional
requirements: it is sufficient to declare in the design environ-
ment the new extra-functional attributes, and new, appropri-
ate component wrappers and connectors will be generated.

4) Make explicit all extra-functional constraints: Even
if we are able to develop components that solely comprise
pure sequential code, it may happen that the source code
implicitly carries some extra-functional concerns in the form
of constraints on its execution.

For example, the code of a control law may have been
developed for execution with a defined frequency (e.g., 8Hz),
because its designer qualified its robustness for that specific
rate only. This kind of extra-functional constraints cannot be
inferred from the source code.

It is then important to make these constraints explicit in
the form of annotations on the component specification. The
component model shall then offer: (i) the means to syn-
tactically specify those constraints to augment description
of the component implementation; (ii) means to check that
when when extra-functional attributes for a component are
specified, they do not violate the extra-functional constraints
that apply to the component implementation.

E. On the applicability of the component model

1) Misunderstanding the concept of “domain-specific”
component model: The creation of a component model
generically targeting real-time embedded systems is not
sufficient. That component model would in fact qualify

as “domain neutral”. ”Domain specific” in this context
denotes a component model specialized for a given real-
time embedded application domain (e.g. space, telecommu-
nications, civil avionics, etc.). Support for ”domain-specific”
concerns entails the support for all the concerns carried by
that specific application domain. Without that support, the
adoption of the component model as industrial baseline may
become unattractive, as the extent of modification required to
fully adapt the domain-neutral part to domain-specific needs
may be significant, and may even risk to undermine fully or
in part the guarantees of the original approach.

In essence, the ideal situation would be the development
of a component model shared between different application
domains, yet capable of expressing domain-specific aspects.
The domain-neutral part of the approach would be used by
all the domains. Each domain would then activate only the
domain-specific part of interest (which includes language
extensions, additional design views, specialized analysis and
code generation) to complement the domain-neutral part.

The consequences of this vision are challenging at differ-
ent levels: (i) from the methodological point of view, the
solution to the domain-specific concerns shall not invali-
date the core principles underlying the domain-neutral part;
(ii) from the language point of view, the design language
shall permit the modular specification of domain-specific
concerns, loosely coupled with the domain-neutral part; (iii)
from the tooling and design point of view, a domain-specific
concern shall be presented in a separate design view, which
is activated only when needed; (iv) from the analysis point
of view, the narrowing of the target to a specific application
domain makes it possible to specialize the analysis model
with a fine-grained description of the relevant aspects of the
target platform (for example, the precise delegation chain
for remote message passing of the distribution middleware of
choice) and to adopt refined analysis equations (for example,
response time analysis specialized for the adoption of the
Ravenscar Computational Model [23]).

III. A COMPONENT MODEL FOR ON-BOARD SOFTWARE
APPLICATIONS

After discussing, with the benefit of the hindsight, the
pitfalls of our predecessors, let us now outline the key
aspects of the component model for on-board software that
we are currently developing. In the description we will
especially highlight the aspects that were influenced by the
lessons learned discussed earlier in this paper.

The component model enforces separation of concerns by
carefully allocating them to three distinct software entities:
(i) the component; (ii) the container; (iii) the connector.

Components are software units that comprise pure sequen-
tial code, and are candidates for software reuse. Containers
are software wrappers, automatically generated by the design
environment, which realize the declared extra-functional

attributes and warrant the preservation of the analysis re-
sults. Connectors are responsible at implementation level for
the interactions between components. The designer creates
exclusively components in the design space. Containers and
connectors are generated by the design environment.

L1 ConnectorAB [~ ‘ c " N
omponen ‘

B

Component =

Container B

Container A

0
0
U]

Execution platform

Figure 3. The figure depicts components, containers (each of which em-
beds a component), and connectors, which manage the mediated connection
between containers. Containers and connectors rely on the services of the
execution platform for the realization of their concerns.

In our approach, the designer creates component “types”,
which include the declaration of provided and required
functional services typed with already defined software
interfaces, as well as a set of typed attributes with getter
and setter operations generated according to the visibility
of the attribute (read-write, read-only, private). Component
types are created in isolation.

From component “types”, the designer creates component
“implementations” that are a concrete realization of a type
in a programming language of choice. The component
implementation is the subcontracting unit of the approach.
A software integrator can establish on it a set of technical
budgets (worst-case execution time of operations, memory
footprint, etc.) and delegate its realization to a software
supplier. Extra-functional constraints emerging from the
source code are annotated on the implementation.

The designer continues by instantiating component ’in-
stances”, which are the entities that are bound together to
satisfy the functional needs, are subject to allocation to
processing units and on which the designer declares the
desired extra-functional attributes (e.g., ’cyclic execution” or
”sporadic execution” with the appropriate period/minimum
inter-arrival time and deadline, synchronization require-
ments, end-to-end timing requirements, etc.).

The software model is then used to generate the ap-
propriate input for the analysis of interest. The results of
the analysis are directly reported back in the user space to
confirm or refute the feasibility of the design.

Finally, containers and connectors are automatically gen-
erated to match the extra-functional attributes specified at
instance level.

Figure 4 represents the design flow induced by our
component model, depicted in terms of design steps and
precedence relations. For example: our components expose
interfaces to relate with other components: the creation of
software interfaces to reference from components is a prece-
dence constraint for the creation of component “provided

Data view
[data type concerns]

Datatype P :

Functional f Component view
[functional concerns]

definition

Behavioural view
[behavioural concerns]

I' Behaviour
definition
[UML state 1
machines, 0L, ...] I

4' Component impleme

H Interface definition Pl

| Component type definition Pl

tation definition Pl

Extra-functional view
[declarative extra-functional
concerns]

Hardware /

Deployment view
[communication and
deployment concerns]

Hardware
definition

W

Component
instance allocation

| Component instance definition |

:_ User-defined release protocols :

on processing unit

I N

= | _defi I
Instance extra- Component |~ "End-to-end extra- | ' allgfaizodne:&?:gon !
functional ?ﬁnbutes bindings _1 functional attributes 1 _----: containers]
- — —— > precedence constraint
Implementation view T o L _—

[Realization of

extra-functional concerns] zeneration of

containers /
allocation on
containers

Generation of connectors
(communication code) 1

| Mandatory step

[F] Step with internal parallelism

Figure 4. The design flow of our component model and the design views used to enforce separation of concerns.

interfaces”. The figure also depicts the various design views
with which we organize the specification of the system.

Activities of different views can proceed independently
(they can be parallelized and assigned to different actors),
provided that their precedence constraints are respected. For
example, "Hardware definition” can proceed independently
of any concern of the functional, data or behavioral view;
the "Behavior definition” of a single component only when
its component implementation has been defined (it is not
needed to define all component implementations). Finally,
several steps (identified with a P’ in Fig. 4) can be internally
parallelized as it is possible to define their design entities in
isolation. For example, it is possible to define component
types in isolation; or there is no dependency between the
behavior definition of two distinct component implementa-
tions.

To confirm our claim about the separation between the
component model and the specification language for com-
ponents, one of the authors of the paper is creating a
prototype implementation of the component model described
in [4], using a domain specific language, defined as an ecore
domain-specific metamodel (DSM). The domain-neutral part
of the component model is being implemented instead in the
CHESS project as an extension of the UML MARTE profile.

We are currently investigating the extension of the DSM
to include domain-specific concerns relevant for the space
domain, e.g., the support for PUS services [24], which

specify the transmission and on-board execution of operation
requests issued by the ground segment. Example of those
services include: the monitoring of on-board parameters,
specification of the reaction to events raised on board, the
dump or upload of memory regions, the frequency of the
generation and contents of the telemetry generated on board
and the rules to downlink it to a ground receiver, etc.

In the CHESS project we will instead investigate how to
include in the component model a selection of the domain-
specific concerns of the target domains according to the
criteria we discussed in section II-E.

In both projects we are investigating the application of
scenario-based schedulability analysis.

Finally, the biggest challenge ahead of us is the inclusion
in the approach of hierarchical components, consistently
with the outlined goals of the two projects, reconciling
them with the current structure of the component model and
avoiding the pitfalls discussed in section II.

IV. CONCLUSIONS

A number of proposals have been made in recent years
for the adoption of component-oriented approaches in the
development of real-time embedded systems. We consider
this to be good news, because that evolution is bound to
raise the level of abstraction with which systems can be
constructed while offering, in principle, sufficient control of
the performance-critical trade-offs of the system design and

implementation. The net result of that would be greater econ-
omy, faster development and more effective consolidation of
best practices.

The success of most of those proposals however was
doomed by a number of common pitfalls and misconceptions
that undermine their goodness of fit.

We had the luxury of hindsight in capturing (some of)
those defects, for the task we were commissioned entailed
a thorough review of the state of the art and enabled us to
interact with authors and users of relevant proposals.

In this paper we discussed the most common pitfalls and
misconceptions that we encountered in our review, and we
contrast with them an outline of the proposal that we are
currently working on.

ACKNOWLEDGMENTS

This work was supported by the Networking/Partnering
Initiative of ESA/ESTEC and by the CHESS project ("Com-
position with Guarantees for High-integrity Embedded Soft-
ware Components Assembly”, ARTEMIS Joint Undertaking
grant nr. 216682).

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. 2nd ed. Addison-Wesley Professional, 2002.

[2] D. C. Schmidt, “Model-Driven Engineering,” IEEE Com-
puter, vol. 39, no. 2, pp. 25-31, 2006.

[3] M. Panunzio and T. Vardanega, “On Component-Based De-
velopment and High-Integrity Real-Time Systems,” in Proc.
of the 15th International Conference on Embedded and Real-
Time Computing Systems and Applications, 2009.

[4] ——, “A Component Model for On-board Software Applica-
tions,” in Proc. of the 36th Euromicro Conference on Software
Engineering and Advanced Applications, 2010, pp. 57-64.

(5

—

M. Chaudron and I. Crnkovic, Component-based software en-
gineering, chapter 18 in H. van Vliet, Software Engineering:
Principles and Practice. Wiley, 2008.

[6] E. Dijkstra, “On the role of scientific thought,” in Selected
writings on Computing: A Personal Perspective, E. W. Dijk-
stra, Ed. Springer-Verlag New York, Inc., 1982, pp. 60-66.

[7] K.-K. Lau and M. Ornaghi, “Control Encapsulation: A Cal-
culus for Exogenous Composition of Software Components,”
in Proc. of the 12th International Symposium on Component-
Based Software Engineering, 2009, pp. 121-139.

[8] E. Conquet, M. Perrotin, P. Dissaux, T. Tsiodras, and
J. Hugues, “The TASTE Toolset: turning human designed
heterogeneous systems into computer built homogeneous soft-
ware,” in Proceedings of Embedded Real Time Software and
Systems (ERTS), 2010.

[9] R. C. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, “The Koala Component Model for Consumer
Electronics Software,” IEEE Computer, vol. 33, no. 3, pp.
78-85, 2000.

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

E. Bondarev, P. H. N. de With, and M. Chaudron, “Predicting
Real-Time Properties of Component-Based Applications,” in
Proc. of the 10th Int. Conf. on Real-Time and Embedded
Computing Systems and Applications, 2004, pp. 60-78.

Object Management Group, “CORBA Component Model,

v4.0,” April 2006, http://www.omg.org/technology/
documents/formal/components.htm.
T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, and

A. Vulgarakis, “Progress Component Model Reference
Manual - version 0.5, Milardalen University, Tech. Rep.,
April 2008. [Online]. Available: http://www.mrtc.mdh.se/
index.php?choice=publications&id=1467

A. Basu, M. Bozga, and J. Sifakis, “Modeling Heterogeneous
Real-time Components in BIP,” in Proc. of the 4th IEEE Int.
Conference on Software Engineering and Formal Methods,
2006, pp. 3-12.

Object Management Group, UML Profile for Modeling and
Analysis of Real-time and Embedded Systems (MARTE),
2009, version 1.0 http://www.omg.org/spec/MARTE/1.0/.

SAE International, “Architecture Analysis and Design Lan-
guage (AADL),” http://www.aadl.info.

R. Racu, A. Hamann, R. Ernst, and K. Richter, “Automotive
Software Integration,” in Proceedings of the 44th annual
conference on Design Automation, 2007.

M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Hékansson, A. Moller, P. Pettersson, and M. Tivoli, “The
SAVE Approach to Component-based Development of Ve-
hicular Systems,” Journal of Systems and Software, vol. 80,
no. 5, pp. 655-667, 2007.

P. Lépez Martinez, J. M. Drake, P. Pacheco, and J. L. Medina,
“Ada-CCM: Component-based Technology for Distributed
Real-Time Systems,” in Proc. of the 11th International Sym-
posium on Component-Based Software Engineering, 2008.

Universidad de Cantabria, “MAST: Modeling and Analysis
Suite and Tools,” http://mast.unican.es.

J. C. Palencia and M. Gonzélez Harbour, “Exploiting Prece-
dence Relations in the Schedulability Analysis of Distributed
Real-Time Systems,” in Proc. of the 20th IEEE Real-Time
Systems Symposium, 1999.

M. Bordin, M. Panunzio, and T. Vardanega, “Fitting Schedu-
lability Analysis Theory into Model-Driven Engineering,”
in Proc. of the 20th Euromicro Conference on Real-Time
Systems, 2008.

ISO/IEC/(IEEE), “Systems and Software engineering - Re-
comended practice for architectural description of software-
intensive systems,” ISO/IEC 42010 (IEEE 1471-2000), 2007.

T. Vardanega, J. Zamorano, and J. A. de la Puente, “On the
Dynamic Semantics and the Timing Behavior of Ravenscar
Kernels,” Real-Time Systems, vol. 29, pp. 59-89, 2005.

European Cooperation for Space Standardization, “Space
Engineering - Ground systems and operations - Telemetry
and telecommand packet utilization,” 2003, ECSS-E-70-41A.

