From composable design models to schedulability analysis with UML and the
UML profile for MARTE

Julio L. Medina and Alvaro Garcia Cuesta

Departamento de Electronica y Computadores, Universidad de Cantabria, 39005-Santander, SPAIN
{ julio.medina , alvaro.garciacuesta }@unican.es

Abstract

Consider the design of hard real-time distributed systems
using a model-based and composable approach, in which
their specification is made using a high level modelling lan-
guage like UML. This demo abstract, presents a tool-aided
methodology to enable the composition and transformation
of such design intended models into also composable sched-
ulability analysis models usable in the verification of the
timing properties of the fully composed and loaded systems.
In order to annotate the required non-functional properties
and state other real-time enabling features, the UML profile
for Modeling and Analysis of Real-Time and Embedded sys-
tems (MARTE), a recent modeling standard of the OMG,
has been used. The methodology comprises several method-
ological guidelines, specific model transformations, and fi-
nally the generation as an output of the concrete schedula-
bility analysis models used by the MAST set of tools, whose
results are back annotated into the high level design UML
models.

1. Introduction!

Model-based software development is one of the most
promising software engineering approaches, since using
reusable, configurable, and composable models may help
significantly in the separation of concerns, increasing the
efficiency, but also the quality of software.

In the case of applications with real-time requirements, a
model-based methodology can help simplifying the process
of building their temporal behaviour analysis models.
These models constitute the basis of the real-time design
and the schedulability analysis validation processes. With
that purpose, the designer of a component must generate, in
synchrony with the models used to generate the compo-
nent’s code, an additional parameterizable model, suitable
for the timing validation of the system resulting out of the
composition. The analysis model for each component

1. This work has been funded by the European Union under contracts,
FP7/NoE/214373 (ArtistDesign), and FP7/CSA/224330 (ADAMS); and
by the Spanish Government under grant TSI-020400-2009-108 (ITEA2-
EVOLVE). This work reflects only the author’s views; the EU is not liable
for any use that may be made of the information contained herein.

abstracts the timing behaviour of all the actions it performs,
and includes all the scheduling, synchronization and
resources information that is necessary to predict the real-
time qualities of the applications in which it might be inte-
grated. In the approach that we present here, these analysis
models are to be automatically derived from high level
design models annotated with a minimum set of real-time
features taken from the requirements of the application in
which they are to be used. In analogy to the generation of
the application’s code as a composition of the code of its
constituent components, the analyst, or application
designer, can also compose the set of real-time sub-models,
and build the complete real-time analysis model of the
application. This strategy helps the designer to get rid of
the tedious and error prone task of building in one piece the
complete reactive model of the application.

A discussion of the process followed for the design of
the real-time characteristics in an strict component-based
development methodology may by found in [1]. This brief
demonstration abstract concentrates on (1) the rational for
the approach, (2) the generation of the output MAST analy-
sis models [2] and the technologies used for it, and (3)
guidelines for the construction of high level application
design UML models that can be transformed in an auto-
mated way in the respective schedulability analysis mod-
els. Finally some conclusions and future work.

2. The approach

The UML Profile for MARTE [3] brings a large number
of modeling constructs and concepts that may be used for
realizing schedulability analysis in a variety of ways. This
effort presents a comprehensive abstract of the way this
approach intends to use those modeling constructs in order
to enable (1) early V&V and afterwards (2) the iterative
use of the models created.

In order to cope with complexity, to manage the risks
associated to the research and the development of tools
efforts, and also to make better use of the modeling
resources offered by MARTE, the complete problem is
divided in two challenging but achievable steps.

) Helperiunctionsjave 7] Actviyfuncionsjave |/ sxemplezdiz &

Command_|marprater Controller Commumication wiaSharedResurces

Display_Data
@ exaSiaps Plan_ Trajectory) @ vaaStaps Sand Status()
A esaSlaps Altend_Feend) B «3aStep> Wait_Coenemnd() & asaStaps Writal)
W esaSlops Auad])
Display Helreshes Stalion Cammunicalisn
«saSharedResources
Sarvas_Data

4§ esaSlops Send_Command])

e3aSteps Wan_Status]

i Palette

sjava | A example.diz B
; Selest

1.4 Marquue

24 UML Links
+ " Depandency

o Gt
(= UML Elements
1 Packige

». 151 Ink g rhwmes:

wsaSlaps

........... _4‘ n Command_Interprster_Task ‘

12 SystermMode! EC. Activity 1
= I Aratysisarchitecture
Command Manage: CAM_Burs_Transfer (0 Mwastrastion oL
(= VFM
 exaStaps Mansgel) & esaSleps Transder_Command) & vehiclreaturoModel ssadtepr 0 e . s
wsaStaps Transdar_Status() FC Activity 7 I hiZ Command_ senvar
Reporter ‘i(
i c3atteps Repat -
) Ec‘:’:‘:r' 3 in Command_Manager_Task ‘
Sarvos_Controller Drlvers B HardwareDesignarchite.., = v
- P — |
. «5aStaps Contral_Migorithms() L esalaga Sund Opes)) = Requiraments
it esaSleps Do Cortiok) i asaliteps Recens_Opar) il atancyObas
«eaStaps Conlral_Senvsl) ‘ _____________________ & &
{globial timeming reqs]
\L
L
By panform | Bay platfarm can Bus B logic B transactions| $3 Activity Bxncute cam-. | 3 Activity Ropan Pracess | §3 Actaity_ Comral Seevo.., | 53 act ram of Tl
B platform By platform_ can Bus B loge |Ba transactions | 33 Actvity Execute_Com... | 5% Actmily Peport Process 53 Actnaty Control Ser

Fig. 1. Views of the tool dealing with structural and behavioral modeling for schedulability analysis

The first step (a) comprises the definition and manipula-
tion of what we will denominate the "analysis models".
The second one (b) is the specification and automation of
those modeling constructs related to what we will call the
"design models". This method helps to support the design
of applications in terms of composable parts, which are
closer in granularity to the concept of real-time objects
than to the fully CBSE interpretation of components. In a
fully component-based approach, the creation of the analy-
sis models would have to be made as a combination of
both, structural elements plus their deployment. In a
model-driven approach, this later strong form of composa-
bility is in a higer level of abstraction, but still may benefit
of the approach here described in order to assess a variety
of non-functional properties, in our case of course its tim-
ing properties by neans of schedulability analysis.

3. Analysis models

The first and more important problem has been the defi-
nition/selection of which and how elements in MARTE are
to be used in the creation of Schedulability analysis mod-
els. These elements are the basis for the tool that has been
developed for the generation of MAST analysis models
taken from UML+MARTE annotated analysis models. Fol-
lowing previous research efforts [4], MARTE provides
concepts to structure the analysis models using three main
categories: The platform resources (a), the elements
describing the logical behaviour of the system constituent
parts (b), and finally the real-time situations to be analysed
(¢). Though the precise mapping from MARTE to MAST
elements may be seen in the demo session, here we sum-
marize a condensed view of the MARTE elements pro-

Table 1
Platform Behavioral Real-Time
Resources Models Situations
GaResourcesPlatform GaWorkloadBehavior SaAnalysisContext *
SaExecHost * GaScenario GaWorkloadEvent *
SaCommHost * SaStep * Allocate
SaSharedResource * SaCommStep Allocated
SchedulableResource * Assign
SaEndToEndFlow *
SaSchedObs
GaLatencyObs *
* Elements used in the extraction tool in current version.

In the tool that has been provided for the generation of
MAST models from UML+MARTE models, the platform
elements are modelled as a set of structural elements with
stereotypes annotated on them. Figure 1 shows an example
of the usage of these elements in the modeling of a teleop-
erated robot distributed platform. The end-to-end flows
that described scenarios are modeled using sequence charts
or activity diagrams. In summary, in the current version of
this tool the elements taken from MARTE to generate the
MAST analysis models are:

Processing_Resource <= SaExecHost, SaCommHost

Scheduler <= SaExecHost, SaCommHost

Scheduling Servers <= SchedulableResource

Shared Resource <= SaSharedResource

Operations <= SaStep <= Sequence/activity Diagram
plus subUsages (ordered list of called operations)

Transactions <= Sequence/Activity Diagram + GaWork-
loadEvent + GaLatencyObs

This effort has been realized using the technologies pro-
vided by PapyrusUML as graphical tool, the UML2 plugin

as model repository, and the Acceleo plugin for the extrac-
tion of text from the UML2 models plus a significant
number of Java functions. The code used as well as the
scripts created will be shared as open source. An initial ver-
sion with support for activity diagrams and composition of
independently characterized timed behaviours will be dem-
onstrated.

4. Design models

The second challenge is the definition of the elements in
UML+MARTE to be used in early V&V design models in
such a way that they can be used for the double purpose of
constructing development (implementation) oriented mod-
els or even code directly while at the same time their
respective analysis models may be generated through sim-
ple and as much as possible automated model transforma-
tion mechanisms.

For this purpose the natural candidates in MARTE are
the fundamental modeling constructs described in the
HLAM (High Level Application Modeling) chapter: RtU-
nit and PpUnit.

The RtUnit modeling element is the basic building block
for handling concurrency in the design and analysis of real-
time applications. The PpUnit is the modeling element
used for specifying mutual exclusion between concurrent
units and the adequate protection protocols in the access to
passive shared resources, for avoiding unbounded priority
inversion.

The key for the usage of these elements is the enabling
of simple mechanisms to keep in synch the two specialized
views that are elaborated as transformations from the
design models built with them: the code generation+imple-
mentation, and the corresponding schedulability or even
performance analysis models. In order to get this we pro-
pose a methodology founded in a small number of mode-
ling rules for the usage of RtUnits and PpUnits, and
directions for the generation of the subsequent implementa-
tion and analysis models.

In order to accomplish the objective of setting up the
basis for an iterative development process, the driving
forces for the definition of the methodology have been the
easiness to iterate over modeling intents and a design space
exploration strategy to introduce analysis results back in
the design constraints.

For the purpose of this methodology we will consider all
the requirements as applicable to a generic unit of design
called module. A module in this sense represents a fraction
of the system that is to be mapped to the equivalent
abstraction/encapsulation element used on the concrete tar-
get design methodology applied by the industrial practi-
tioners for coping with complexity in the field. This results
natural when considering them as independent subsystems,

but it is applicable also to other composition mechanisms
like loosely coupled software/hardware components, or
physical concurrent units

The modeling rules to be applied are the basis for the
combined purpose of a design & analysis methodology and
are later complemented with guidelines for specific phases
and concerns.

The description of the RtUnits and PpUnits and their
precise semantics are made in the domain view of HLAM
chapter and the appendix F of MARTE [3] respectively.
The set of rules is enounced considering the semantics
there described but using the nomenclature of the attributes
available in the corresponding stereotypes.

Early V&V assumes that at the time of analysis there are
still a number of decisions not taken about aspects like the
platforms or specific interface technologies. To be able to
asses the viability of the system without this information,
some by default values will be filled in the analysis &
design models.

The set of rules for the use of UML with the HLAM
modeling elements of MARTE needs to restrict the design
space to get models that may be analysed by schedulability
analysis with the available techniques. This way it formu-
lates the basis for modeling at any stage of the develop-
ment process. This initial set of rules is enounced as
follows:

1. Real concurrency is handled by RtUnits at
processing resource level, each node by them represented
may in turn handle several schedulable resources by means
of a regular scheduler.

2. Each RtUnit may have up to one schedulable
resource on it, and all its behaviours, which may be called
from other RtUnits, run under the scheduling parameters
associated to that schedulable resource. In case the RtUnit
has no schedulable resource, its behaviours run under the
scheduling parameters of the calling RtUnit.

3. All the RtUnits deployed in a processing resource
are handled by the same scheduler and use the same (or
fully compatible) scheduling policy.

4. Each RtUnit whose isMain attribute is set to true,
implies the presence of an execution host where the main
service of the RtUnit is deployed.

5. The attribute srPoolPolicy holds the value infi-
niteWait

6. ExecKind of PpUnits is ImmediatRemote

7. All services use the same priority scheme: Imme-
diateCeiling or PriorityInheritance

8. The ConcurrencyPolicy of PpUnit is Guarded.
[The concurrency policy of the kind Concurrent might be
enabled in order to have the writer/reader Concurrency-
Kind available but this behaviour requires additional capa-

bilities from the analysis techniques so in principle it is
discouraged].

9. Behaviours of RtUnits stereotyped as RtServices
are those that may be called from others.

Additional rules that apply in specific phases of the
development process are:

11. The platform models of the execution hosts are
derived from the RtFeatures of RtUnits with the attribute
isMain set to true. The basic assumption is that a main is
the starting of the full piece of software running on a con-
crete node. The scheduling policy of the scheduler derives
from the one used for this main. Consistently the range of
priorities (in the case in which this is the policy chosen)
will be set to be greater than the number of RtUnits (with
their isMain attribute to false) with which the main RtUnit
has any sort of interaction.

12. The rules for analysis platform models will be
refined after practising with the MAST default values.
(using initially no context switch time for example).

13. The links between services will be used to define
the steps in the end-to-end-flows.

14. The parameters of the Analysis Context modeling
element will be used to define the variations in the analysis
due to refinements in the design.

15. Results will be place back in design models by
means of RtFeatures Specifications and the parameters of
AnalysisContexts.

16. The iterative nature of the models used for design
space exploration will be handled by specializing/using the
configuration stereotype, described in the Modal Behav-
iour section of HLAM chapter of MARTE.

The tooling support for enforcing and helping to asses
the usage of these rules is not already embedded in the ver-
sion that will be demonstrated, but it is on its way to be
realized

5. Conclusions and future work.

Considering the prospects of the OMG’s UML Profile
for MARTE as a modelling standard for analysis tools
interoperability, it seems reasonable to look for model
based strategies that link it with modeling intensive activi-
ties. And a clear semantics for the High level application

modeling is the basis for automating the process of having
timing analysis results quickly in the development life
cycle.

The extraction of MAST analysis models from the
UML+MARTE schedulability analysis specific models is a
first demonstrable step in the direction pointed out by this
effort and comprises the construction of analysis models
from separated composable modeling descriptions using
the specific constructs brought by the SAM chapter of
MARTE, which is consistent with MAST and previous
efforts in this direction [4]

From the real-time and embedded systems research
community perspective, this effort constitutes a step to get
the effective exploitation of the capabilities of the available
analysis and verification techniques, which despite the
efforts in dissemination, have not yet reached an audience
large enough to reward the many years of work in the field.

The modelling strategy and tools proposed in this work
are just a first step in this direction, a significant work
remains to be done in order to have a fully automated proc-
ess. The validation of the rules and their automation by
means of a model validator and the necessary transforma-
tions are part of our ongoing work and will be addressed in
the near future.

References

[1] Lopez P., Drake J.M., and Medina J.L., Enabling Model-
Driven Schedulability Analysis in the Development of
Distributed Component-Based Real-Time Applications. In
Proceedings of 35th Euromicro Conference on Software
Engineering and Advanced Applications, Component-based
Software Engineering Track, Patras, Greece, August 2009,
IEEE, ISBN 978-0-7695-3784-9, pp. 109-112.

[2] M. Gonzéilez Harbour, J.J. Gutiérrez, J.C.Palencia and
J.M.Drake, MAST: Modeling and Analysis Suite for Real-
Time Applications, in Proc. of the Euromicro Conference on
Real-Time Systems, June 2001.

[3] Object Management Group, UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE)
version 1.0, OMG doc. formal/2009-11-02, 2009

[4] J.L.Medina, M.Gonzalez Harbour and J.M. Drake, Mast Real-
Time: A Graphic UML Tool for Modeling Object-Oriented
Real-Time Systems, in Proc of the 22nd [EEE Real-Time
System Symposium (RTSS 2001),pp 245-256,2001.

