A tool for component-based schedulability analysis of distributed real-time pipelines

Nicola Serreli, Giuseppe Lipari, Enrico Bini
Scuola Superiore Sant’ Anna, Pisa, Italy
Email: {n.serreli,g.lipari,e.bini} @sssup.it

[. INTRODUCTION modularity and extendability.

In many scenarios, such as in the automotive context [1], The basic clasSask models a sporadic/periodic non-
[2], the complexity of developing a distributed real-time concrete task (also called offset-free task). The clastagu
embedded (DRE) system is reduced by dividing the systerfl€ main features of a task: worst-case execution time
into separate components, possibly developed by a differecet), relative deadlined! i ne), and period ger i od).
teams or third_party Companies' The Component_based aa—_o thend th(—’)l'ask class Wlth pther properties, it is pOSSibIe
proach does simplify both the analysis and the integrationO €ither derive a new specific class, or use the methods:
although it introduce some waste of resource. voi d set_property(string &, double val);

In distributed real-time embedded (DRE) systems, a softdoubl e get _property(const string &s) const;

ware component is often modeled as a chain of tasks (alst% t . h f th ith ical
calledtransaction or pipeline) [3]. Each task of the pipeline at associate the name of t € property with a numerica
is allocated on a (possibly different) processing node. Thé’alue' F(_)r_ example, some algorlthm_could use the additional
first task is activated periodically, or by external eventsPrOperWJ itter. Ifwe wan_t to Sp?c'fy th.atatasksk has
characterized by a minimum interarrival time. The otherJltter equal t03.5, we have just to invoke:
tasks are activated in accordance with the chain order, i.é¢.sk. set _property("jitter", 3.5);
they start upon the completion of the preceding one. Th
last task must complete within amd-to-end (EE) deadline
relative to the activation of the first task. j = tsk.get_property(“"jitter");

In [4], [5], we presented a methodology to perform a The Task class also exports some helper function to
component-based analysis of task pipelines. In our model,. lifv the schedulability analvsis alaorithms implertemh
the interface of a pipeline component consists of a set o?'mr? "y L Th . y y g P
demand bound functions (dbf) [6], one for each node on In the tool. These are:))
which the pipeline runs. In [4] we presented a heuristic ¢ doubl e get_next_arrival (double t), which re-
algorithm to assign intermediate task deadlines to mirémiz NS the next arrival time aftar;
the dbf of the pipeline. In [5] we presented a methodology ¢ doubl e get_num next_deadl i ne(double t),
to compute theibf of sporadic pipelines. yvhlch returns the pext a.bsolute deadline after

In this paper, we present a software tool for analyzing ® !Nt get_numarrived_instances(doubl e t1,
DRESs. The tool consists mainly of a C++ library. The library doubl'e t2) that returns the number of instances
models virtual processing nodes and task pipelines, and can ~ &rrived in intervalty, 5], and
perform both classical holistic schedulability analysis ds + int get_contained_instances(double t1,
well as the algorithms described in [4], [5]. The library has ~ doubl e t2) the ones entirely contained [y, t2].
been designed to be easily extended with new schedulability Finally, appropriate operators for reading/writing a task
analysis, and more complex task models (e.g. DAGs). Wérom/to a file are available:
show the internal structure of the library and show its usag@s¢ r eam & operat or<<(...):

She algorithms can retrieve such information with:

on a simple example. i stream & operator>>(...) throw(l!l|egal Val ue);
[l. STRUCTURE OF THE SOFTWARE LIBRARY The classTransact i on represents a chain of tasks.
A. Tasks, Transactions, dbf The way to create a transaction is to first create the

The library has been written in C++ and designed ac.Jransaction object, and then repeatedly invoke the

: :) : dd_t ask method, specifying the index of the node on
ding to Object Oriented d thodology, to enhanc&%%— " ,
cording fo Lbject Lriented design methodology, to en anCwh|ch the task has been allocated. Also, it is possible to

The research leading to these results has received fundomg the read/write the transaction parameters from/to a file.
European Communitys Seventh Framework Programme FP7 gneet In this version of the tool, no allocation algorithm has
agreement n.214777 “IRMOS Interactive Realtime Multinaedipplica- .
tions on Service Oriented Infrastructures” and n.24846®)JSS Service- been |mplemented yet. Therefore, we assume that tasks are
oriented Operating Systems.” already allocated to nodes by some other external tool.

Thedbf of a task chain is represented by a function objectvoi d sl ack_assi gnment (. ..);
calleddbf . For example, it is possible to compute tthlef
of a task by simply invoking the constructor:

dbf (const Task &t);

or assign intermediate deadlines proportionally the tasks
WCETs by invoking:

voi d proportional _dlines(...);
To obtain the value of thdbf in a certain interval of length

t, it is sufficient to apply operatdr) . For example: C. Computing the sporadic dbf
Task tsk(10, 20, 30); The dbf of pipelines activated sporadically may exceed
dbf fun(tsk); the one with strictly periodic activation [5]. We implemedt

doubl'e v = fun(50); the functions to compute thébf in the sporadic case, that

will assign20 to the variables, since in the worst case there is
are 2 instances of tagksk in an interval of lengttb0.
We enable the combination of twibfs by the operators:

dbf operator+(const dbf &dJ1, const dbf &d2); . The algc_)rlthm for CO'.””F’““.”Q thfébf of §porad|c pipelines
dbf sup(const dbf &d1, const dbf &d2): is rather time-consuming since it requires to span over all

]) the possible arrival patterns [5]. Hence we implemented als
The first one returns the sum of the tabf functions passed the following two upper bounds to the exatttf:
as parameters. The latter one returns the function that for

C vect or <dbf > test_ub_dbf_transaction(...);
every pointt is the max ofd1(t) andd2(t). vect or<dbf > test_iub_dbf transacti 0$1(. . ?);
Finally, the invocation of - T~

vect or <dbf> spor_dbf _transaction(...);

bool check_sched(doubl e al pha, double delta); D. Holistic Analysis
allows checking if thedbf is below the linear bound.(t — In addition to the analysis based on the demand bound
A)g. function, we have implemented also the holistic analysis

N . . described in [7]. This analysis is global, so it can only
B Assgnlng.|ntermed|ate .dea_dlm_% _ _ be executed on the whole set of transactions in a system.
The algorithms for assigning intermediate deadlines havehe holistic algorithms have been implemented in a separate

been collected in the namespasean: : opt. We imple- namespacecan: : EDFHol i sti c. The analysis is invoked
mented a few versions of the simulated annealing algorithnpy the function

which tries different alternative assignments until it nd
a “good one” (not necessarily optimal). The versions only
differ in the objective function to be minimized. We imple- which corresponds to algorithm MDO-TO in the paper. The

bool of fset Anal ysi sTransMax(...);

mented the following ones: function returnsgt r ue is the set of transactions is schedu-
« optinize_slope() minimizes maxy ;(dbf(t)/t — lable,f al se otherwise. If all the pipelines are schedulable
Ux), whereU, is the total utilization of all tasks of then the functiorof f set Anal ysi sTr ansMax stores the
the transaction on node response times of the tasks in thieansact i on classes.
o optinize ratio() minimiZGSmaxkyt(%i)/t), i.e. Finally the function

we are minimizing the maximum ratio between the yect or <Transacti on> pl ai nTransactions(...);

in any point, and the value of the linear function of o
slopeU. can randomly generate set of pipelines. It reads the fol-

lowing input parameters: desired number of transactions
(numTr ans), minimum and maximum number of tasks
per transactionnuniTasks_m n, numrasks_nmnax), total
utilization (U), minimum and maximum transaction period
(m nPeri od, m axPer i od), the greatest common divisor
among all transaction periods3¢D), the minimum and
maximum end-to-end deadlinei(nDead, maxDead), and

the number of processoraynPr oc).

Obviously, the two functions are only wrapper functions of
a more general optimization that is not part of the interface
This general optimization function uses the GSL libfary
that already implements many optimization algorithms.

We also provided some sub-optimal polynomial function
for assigning deadlines. TH@RDER function [4] can be
executed by
vect or <doubl e> ordered_assignment(...);

[1l. CASE STUDY

To illustrate the tool developed, we present a sim-
lpIe case study (the source code is fully available at
retis.sssup.it/bini/sw/). This example can be run by ex-
ecuting dbfs_try after a proper configuration, with
lavailable as open source software at www.gnu.org/soffgsife ./ confi gur e, and compilation withmake). We assume

Unfortunately, with some pathological parameters the func
tion may fail to find a solution. In such cases, the
NoSol uti on exception is raised, and the user can rever
to apply some simpler heuristic [8]:

to have two pipelines distributed among a set of CPU. The 40

number of tasks and the number of available CPUs are
read from standard input. The output contains a considerg 30
able amount of data, such as the demand bound functiof

on each node computed considering the initial deadlin€ 20 initial e

assignment and the ones computed with ORDER deadling SLACK --+sssee-

assignment [4]. The data extraction is performed by php% 10 ORDER

scripts. We choose php because it can be run from commang

line, it easy to read and can elaborate text with few lines of” il

code. 0 10 20 30 40 50 60 70 80
All the steps, except the compilation, are collected to- interval fength

gether in one bash scripgthf s_t est s. sh, that runs the Figure 2: Bandwidth of pipelines.

analysis, extract all the computedfs and invokes gnuplot
to generate comparative diagrams, that show the difference

among different methods used to assign the deadlinesliniti REFERENCES
(i.e._ random) assignment, ORDER assignment [4] and slach] K. Richter, R. Racu, and R. Emst, “Scheduling analysig-
assignment [8]. gration for heterogeneous multiprocessor SoCPiiaceedings

In Figure 1 we plot the linear upper bounds to the of the 25" Real-Time Systems Symposium, Cancun, Mexico,
dbfs, as generated by gnuplot. We can observe that only Dec. 2003, pp. 236-245.
the ORDER deadline assignment produces a schedulab

transaction (with slope not larger thaj B] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-

Vincentelli, “Definition of task allocation and priority sign-
ment in hard real-time distributed systems,” Rnoceedings
40 L of the 28" |EEE Real-Time Systems Symposium, Tucson, AZ,
R Dec. 2007, pp. 161-170.

w
o

L [3] K. W. Tindell, A. Burns, and A. Wellings, “An extendible
approach for analysing fixed priority hard real-time tasks,

initial === Journal of Real Time Systems, vol. 6, no. 2, pp. 133—-152, Mar.
SLACK ---=====-= 1994.

N
o
o
X
v}
m
Py

linear demand bound
N
o
N
N\

,/ [4] N. Serreli, G. Lipari, and E. Bini, “Deadline assignmefor
4 component-based analysis of real-time transactions 2rich
Workshop on Compositional Theory and Technology for Real-

10 20 30 40 50 60 70 80 i
interval length Time Embedded Systems, Washington, DC, U.S.A., Dec. 2009.

o
o

[5] ——, “The demand bound function interface of distributed
sporadic pipelines of tasks scheduled by edf, Pioceedings
of the 22nd ECRTS, July 2010, pp. 187-196.

Figure 1: Bandwidth of pipelines.

Figure 2, instead, shows all the details of diefs. We _ _
highlight that the plotting is fully automatized by the gtri [6] S- K. Baruah, R. Howell, and L. Rosier, “Algorithms and
files. comp_lexny concerning the preemptive scheduling of peciod

real-time tasks on one processdréal-Time Systems, vol. 2,
pp. 301-324, 1990.

[7] R. Pellizzoni and G. Lipari, “Holistic analysis of asymonous
real-time transactions with earliest deadline scheduilidour-
nal of Computer and System Sciences, vol. 73, no. 2, pp. 186—
206, Mar. 2007.

[8] M. Di Natale and J. A. Stankovic, “Dynamic end-to-end
guarantees in distributed real time systems,Pioceedings of
the 15" | EEE Real-Time Systems Symposium, San Juan, Puerto
Rico, Dec. 1994, pp. 215-227.

