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Abstract On the other hand, looking at industrial systems, to speed
up their development, it is not uncommon that the large and
In this paper we propose a synchronization protocol for complex systems are divided into several semi-independent
resource sharing among independently-developed rea-tim subsystems each of which is developed independently. The
systems on multi-core platforms. The systems may use difsubsystems which may share resources will eventually be
ferent scheduling policies and they may have arbitrary pri- integrated and coexist on the same platform. This issue has
ority settings. When using this synchronization protocol got attention and has been studied in the uniprocessor do-
each processor is abstracted by an interface which consistsmain [4, 15, 21]. An interesting challenge is to extend this
of a set of requirements. A requirement depends only onissue to multi-cores. Hence, new techniques are sought for
the worst-case time the processor may wait for resources,scheduling semi-independent subsystems.
i.e., the maximum number of times that the resources can be Looking at current state-of-the-art, two main approaches
blocked by other processors. We have derived schedulabilfor scheduling real-time systems on multiprocessors (mult
ity conditions for each processor and based on the analysiscores) exist; global and partitioned scheduling [2, 3, 73, 1
we extract the interface of the processor. In this paper, we Under global scheduling, e.g., Global Earliest Deadline
focus on the cases when each system is allocated on a dquirst (G_EDF), tasks are scheduled by a Sing|e scheduler
icated processor. and each task can be executed on any processor, i.e., migra-
tion of tasks among processors is permitted. Under parti-
1 Introduction tioned scheqlul?ng, tasks are statically assigned to psoces
and tasks within each processor are scheduled by a unipro-
The availability of multi-core platforms has attracted a cessor scheduling protocol, e.g., Rate Monotonic (RM) and
lot of attention in multiprocessor embedded software anal- Earliest Deadline First (EDF). Partitioned scheduling-pol
ysis and runtime policies, protocols and techniques. As cies have been used more often and are supported widely
the multi-core are to be the defacto processors, the indusby commercial real-time operating systems [26], inhenent i
try must cope with a potential migration towards multi-core their simplicity, efficiency and predictability. Besidethe
platforms. well studied uniprocessor scheduling and synchronization
An important issue for industry when it comes to migra- techniques can be reused for multiprocessors with fewer
tion to multi-cores is thexistingsystems. When migrating changes (or no changes).
to multi-cores it should be possible that several of these sy |, thjs paper, we focus on the partitioned scheduling pol-
tems coexist on a shared multi-core platform.  The (often jcy and synchronization protocols. Allocation of indepen-
independently developed) systems may have been develgently developed systems on a multi-core architecture may
oped with different techniques, e.g., several real-time sy paye following alternatives: (i) One processor includely on
tems that will coexist on a multi-core may have different one system, (i) one processor may contain several systems,
scheduling policies. However, when the systems coexistjij) 4 system may be distributed over more than one pro-
on the same multi-core platform they may share resourceScessor. In this paper, we concentrate on the first altemativ
Two challenges to overcome when migrating existing sys- i which each system is allocated on a dedicated processor
tems to multi-cores are how to migrate the independently (core), For the second alternative, the well studied tech-
developed systems with minor changes, and how to abstrachjques for integrating independently developed systems on
systems sufficiently, such that the systems do not need to bgniprocessors can be used. These techniques usually trans-
aware of techniques used in other systems. form each system into the abstraction of a task, hence from
“This work was partially supported by the Swedish Foundaim outside of the containing processor there will be one system
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same as the first alternative. However, extension to the thir sharing mutually exclusive resources using partitiones.FP
alternative remains as a future work. Lakshmanan et al. [26] investigate and analyze two alterna-
. . tives of execution control policies (suspend-based ant spi
1.1 Contributions based remote blocking) under MPCP. However, MPCP can
The contributions of this paper are as follows. be used for one single system whose tasks are distributed
on processors. Furthermore for schedulability analysis of
each processor, detailed information of tasks allocated on
other processors (e.g., priority, the number of globaiaait
section, etc) may be required. Under MSPIS the schedula-
bility test of a system on a processor is represented as its
interface (requirements) which can be obtained without any
« For a processor we derive thesource hold timef a information from other systems (even before the systems
global resource (i.e., a resource shared across procesare deyeloped) which will be allocated on_other processor.
sor) which is the maximum time that a resource can be ~ Gai et al. [23, 24] present MSRP (Multiprocessor SRP),
held by a any task on the processor. We also deriveWhich is a P-EDF (Partitioned EDF) based synchronization
the maximunresource wait timdor a resource which  Protocol for multiprocessors and is an extension of SRP to

is the worst-case time that a processor may wait for a Multiprocessors. _ _
resource to be available. Lopez et al. [29] present an implementation of SRP un-

der P-EDF. Devi et al. [18] present a synchronization tech-
e We derive theschedulability conditionand based on  nique under G-EDF. The work is restricted to synchroniza-
that we extract atnterfacefor each processor which tion of non-nested accesses to short and simple objects, e.g
abstracts the system on the processor. The interface is &tacks, linked lists, and queues. In addition, the maingocu
set of requirements that should be satisfied for the pro- of the method is soft real-time systems.
cessor to be schedulable. A requirement indicates that Block et al. [8] present Flexible Multiprocessor Locking
an expression (e.g., summation) of resource wait timesProtocol (FMLP) which is the first synchronization protocol
of one or more global resources should not exceed afor multiprocessors that can be applied to both partitioned
certain value. Thus, the requirements in the interface and global scheduling algorithms, i.e., P-EDF and G-EDF.
only depend on the resource maximum wait times and An implementation of FMLP has been described in [10].
hence to obtain the interface of a system, the processoBrandenburg and Anderson in [9] have extended partitioned
will not need any information from other processors, FMLP to the fixed priority scheduling policy and derived
e.g., scheduling protocol or priority setting policy on a schedulability test for it. In a later work [11], the same
other processors. authors have compared DPCP, MPCP and FMLP.
In all the aforementioned existing synchronization pro-
1.2 Related Work tocols on multi-cores (multiprocessors) it is assumed that

In the context of independently-developed real-time sys- the tasks of a system are distributed among processors and
tems (real-time open systems) on uniprocessors, a considall processors use the same scheduling policy (e.g., EDF
erable amount of work has been done [1, 14, 16, 20, 25, 27,0r RM) is used. MSPIS, however, allows each processor
28, 30, 31, 34, 38, 37]. Hierarchical scheduling has beenuse its own scheduling policy. Recently, in industry, co-
studied and developed as a solution for these systems. existing of several separated systems on a multi-core plat-

Hierarchical scheduling techniques have also been develform (called virtualization) has been considered to reduce
oped for multiprocessors (multi-cores) [12, 36]. However, the hardware costs [6]. MSPIS seems to be a natural fit for
the systems (called clusters in the mentioned papers) are assynchronization under virtualization of real-time sysgem
sumed to be independent and do not share resources. on multi-cores.

In the context of the synchronization protocols, PCP  Recently, Easwaran and Andersson have proposed a syn-
(Priority Ceiling Protocol) [35] and SRP (Stack-based Re- chronization protocol [19] under the global fixed priority
source allocation Protocol) [2] are two of the best known scheduling protocol. In this paper, for the first time, the
methods for synchronization in uniprocessor systems. authors have derived schedulability analysis of the Prior-

For multiprocessor synchronization, Rajkumar et al. for ity Inheritance Protocol (PIP) under global scheduling al-
the first time proposed a synchronization protocol in [33] gorithms.
which later [32] was called Distributed Priority Ceilingd?r
tocol (DPCP). DPCP extends PCP to distributed system52 Task and Platform Model
and it can be used with shared memory multiprocessors. In this paper, we assume that the multiprocessor (multi-
Rajkumar in [32] presented MPCP, which extends PCP to core) platform is composed of identical, unit-capacity-pro
multiprocessors hence allowing for synchronization df¢as cessors (cores) with shared memory. Each processor con-

e \We propose asynchronization protocofor resource
sharing among independent systems on a multi-core
system, each of which allocated on a dedicated core.
We call the protocol as Multiprocessors Synchroniza-
tion Protocol for Independent Systems (MSPIS).



tains a different task set (system). The scheduling tech-
nigues used on each processor may differ from other pro-

multi-core (multiprocessor) platform we compute resource
hold times for global resources in a different way (Sec-

cessors, e.g., a processor can be scheduled by fixed priorityion 3.4.1).
scheduling (e.g., RM) while another processor is scheduledDefinition 2: Maximum Resource Wait Tinfer a global

by dynamic priority scheduling (e.g., EDF), which means
the priority of tasks are local to each processor.

In this paper, we focus on schedulability analysis of pro-
cessors with fixed priority scheduling. A task set allocated
on a processory,, is denoted byp, and consists ot spo-
radic tasks,r; (15, Cs, pi, {Csi qp}) WhereT; denotes the
minimum inter-arrival time between two successive jobs of
taskr; with worst-case execution time; andp; as its pri-
ority. A task,; has a higher priority than another task,
if p; > p;. The tasks on processét, share a set of re-
sourcesRp,, which are protected using semaphores. The
set of shared resourceB 4, ) consists of two sets of differ-
ent types of resourcefycal andglobal resources. A local

resourceR, on processor’,, denoted aRWT, ., is the
worst-case time thak, is held by other processors tha,

i.e., RWT, ;. is the maximum duration of time in whicR,,

is not available to any task of,.

Definition 3: A processor Py, is represented by anter-
face@ which is a set of requirements wherks the num-

ber of tasks orP, that request at least one global resource,
i.e., each requirement is extracted from a task requesting
one or more global resources (Section 4). For a proces-
sor, Py, to be schedulable all requirements@h, should

be satisfied. A requirementy, € Q, is the maximum
resource wait times of one or more global resources, e.g.,
r1 = RWT, , +RWTj3 ;, < 10 indicates that the maximum

resource is only shared by tasks on the same processor whilavaiting time for both global resource®, and R3 should
a global resource is shared by tasks on more than one pronot exceed 0 time units. The interface (requirements) of
cessor. The sets of local and global resources accessed bgach processor is extracted from the schedulability aisalys

tasks on processdt, are denoted byzj;, andR{, respec-
tively. The set of critical sections, in which taskrequests
resources iR p, is denoted by{C's; ,, ,}, whereC's; , ,, iS
the pt* critical section of taskr; in which the task locks
resourceR, € Rp, and|Cs; 4 ,| indicates the worst case
execution time of the critical section. In this paper, we fo-

of the processor independently.

3.2 General Description of MSPIS

The MSPIS manages intra-processor and inter-processor
global resource requests; the tasks within a processor re-

cus on non-nested critical sections (the common case). Thejuesting a global resource are enqueued in a local FIFO

deadline of each job is equal 1. A job of taskr;, is spec-
ified by J;. The utilization factor of task; is denoted by,
whereu; = Cz/Tz

3 The Multiprocessors Synchronization Pro-
tocol for Independent Systems (MSPIS)

3.1 Assumptions and terminology

We assume that systems are already allocated on procesg—
sors and that each processor may use a different schedulingn
policy. The tasks within a system allocated on a processor:

do not need any information about the tasks within other

systems allocated on other processors, neither do they nee

to be aware of the scheduling policies on other processors.

Definition 1: Resource Hold Timef a global resourcé,

by taskr; on processof’; is denoted byRHT,, 1 ; and is
the maximum duration of time the global resourgg can
be locked byr;. Consequently, the resource hold time of
a global resource?,, by processof’, (i.e., the maximum
duration of timeR, is locked by any task oi’;) denoted
by RHT, x, is as follows:

RHT, ; = max (RHT, ;)

Ti€ETPy,

(1)

The concept of resource hold times for composing multiple
independently-developed real-time applications on wmipr

cessors has been studied previously [22, 5], however, on a

gueue (intra-processor queuing) and the processors iteques
ing the global resource are enqueued in a global FIFO queue
(inter-processor queuing). It is also possible to use a lo-
cal prioritized queue instead of FIFO, but the schedulgbili
analysis will be more complex. On the other hand no con-
crete research results have shown which type of queues is
absolutely better for queuing on global resources. For the
lobal queue, however, FIFO fits well since prioritizing the
ystems on processors may not make sense. Besides, the
aximum resource wait times may not easily be calculated
if the prioritized global queue is used. Figure 1 shows an
verview of how the protocol works. Each processor can
ﬁold a global resource.
Definition 4: A global resourceRR,, is available to a pro-
cessor.Py, for at mostZ, ; time units callecbudgetwhich
should be greater or equal ®H 7T, ., i.e., RHT ;. < Zg 1.
The resource is available to the processor at the head of the
global queue and the processor holds the resource until the
budget is depleted or unless there are no tasks in the local
gueue. Considering each procesdeyr, has a limited bud-
get (Z,,) on a global resourcey,, the worst-case waiting
time RWT, 1) for P, to wait until R, becomes available is
bounded as a summation Bf, budgets of other processors
sharingR,:

RWTg, = Z Zq,l
P£Py,

(2)



Global Queue global queue. In this case, is deleted from the head and
added to the end of the global queue, apdvill continue

ﬂ ﬁ ﬂ suspending and remains at the top of the local queue until
Local Queue Local Quese Local Queve nexttimeR, becomes available tB;. Inspired by a similar
definition in [4] we call the extra overhead introduced-to
< R;?q,k,i by this suspension alf-blocking time Whent; requests
— " —— 7 R, ifitis not available to the processor or if it is locked by
<Zy < RWT,; another task on the processor,suspends and is added to
the end ofR?,’s local queue.

Figure 1: MSPIS Rule 6: WhenT; on P, releases global resourég, at time
instantt, if there is no more tasks waiting iR,'s local
queue,P;, releasesk, and P, is deleted fromR,’s global

3.3 MSPIS Rules queue even if theP,’s budget of R, is not finished (i.e.,

The MSPIS rules are as follows: Zf],k(t) > 0).
Rule 1: Access to local resources is controlled by a unipro- 3.4  Schedulability Analysis
cessor synchronization protocol, e.g. PCP or SRP.
Rule 2: For a processorpPy, a ceiling is defined as
ceil(P,) = max {p;|7; € P} if PCP is used for local re- Supposing a task set on a processor is schedulable, we
sources (in this paper, we assume that PCP is used). Howdescribe how to compute the global resource hold time by
ever, in the case of using SRP for local resources the ceiling2 task and consequently by a processor.
of the processor is defined @si(Py) = max {\;|; € P}
where)\; is the static preemption level of. LEMMA 1: A task, Tiy within agces accessing a gIobaI
Rule 3: A task, 7;, within aglobal critical section(ges) in resource,R,, can be interfered with at most oges per
which 7; accesses a global resource can only be preempte@ach higher priority tasks; in which 7; accesses a global
by another task within gcs. This bounds blocking times ~ resource other thaft,.
on a global resource as a function of only global critical
sections. The concept that the blocking time on global re- Proof: For ages of 7; to be interferenced by twgcses
source should only depend on the duration of global criti- (&nd more) of a higher priority task;, 7; needs to enter
cal sections is a basic issue in the existing multiprocessora hon-critical section before entering the secgnsl On
synchronization protocols, e.g., MPCP, MSRP [32, 24]. To the other handr; within a ges has a priority higher than
satisfy this criteria the priority of a task within gcs has ~ any task within a non-critical section (Rule 3). Considgrin
to be greater thaneil(Py). Thus the priority of a tasks; thatr; within the gcs can only be preempted by other tasks
within ages in which 7; accesses a global resource is raised Within gcses, 7; will be preempted after exiting the first
to p; + ceil(Py). This means that a task withingas can ges and will not have any chance to enter the secondas

3.4.1 Computing Resource Hold Times

only be preempted by a higher priority task withigas. long asr; has not exited itgcs.
Rule 4: In this paper, for a processé¥, accessing a global
resource we assumg, , = RHT,; (how to fairly dis- Based on LEMMAL1, the maximum interference from the

tribute the budget among processors remains as a futurdligher priority tasks (withirycses) to anyges of taskr; in
work). The processors requesting a global resource are loWhich it accesses a global resoutg is denoted asi; ,
cated in the global FIFO queue of the resource; when a taskand is computed as follows.

on a processot, requests a global resourde,, if R, is
not available toP; it will be added to the global queue (if
Py, is not already in the queue). Whe?), becomes avail- Pi<pi
able toP, it can lock Ry, for at mostZ, ;, time units. )
Rule 5: When a global resourcé,, is available to proces- ~ Consequently the resource hold time of global resolige
sor P, the task from the top of the local FIFO queueRyf by taskr; is computed as follows:

locks it. The total duration of locking, should not exceed _

Z,.x, hence there should exist a runtime mechanism to fig- RHTq r.0 = H@X{'C&’q’su + Hig (3)
ure out theemaining budgetf any global resource?,, at o
any time instant;. We denote the remaining budget at time 3-4-2  Blocking times under MSPIS

instantt by Z; , (). When a global resource?, at time In this section we describe the possible situations thagla ta
instantt becomes available to task it will be eligible to 7; can be blocked by other tasks on the same processor as
access the resourceRHT, 1 ; < Z ! .(t) otherwiseR,, is well as by other processors. Each processor can contain a
released and becomes available to the next processor in thdifferent system and may have a different scheduling policy

Hig= Y  max {|Csiul}

R,ERS 174
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Thus the worst case blocking overhead (iremote block-
ing) from other processors on a global resource introduced
to tasks on a processdry, is abstracted bRWT, ;. (Defi-
nition 1).

The possible blocking terms that a taslkon a processor
P, may experience are as follows:

1. Supposef is the number oficses ofr;. Each timer;
is blocked on a global resource and suspended, a lower
priority task may arrive and lock a local resource and
may blockr; when it resumes. This scenario can hap-
pen up ton{’ times. On the other hand, according to
PCP (and SRP), task can be blocked on a local re-
source by at most one critical section of a lower prior-
ity task which has arrived beforg. This means that
7; can be blocked at mostf + 1 times on local re-
sources. Thus, the worst case blocking time on local
resources (denoted by; ;) is calculated as follows:

By =(nf +1) max {ICsj0pl}
1 =P
RIERE, , pi<ceil(Ry)
vVp
(4)

whereceil(R;) = max {p;| 7; usesR;}

2. Beforer; arrives or each time it suspends on a global
resource, a lower priority task; may access a global
resource (enters gcs) and preempt; in its nonycs
sections after it arrives or resumes. Sing&€an sus-
pend on global resources up§’ times, this type of
preemption can occur at mosf’ + 1 times (the ad-
ditional preemption can happen byarriving and en-
tering agcs beforer; arrives). On the other hand
can preempt; at mosthG times. Hence preemption
from 7; can happen at mostin {n¢ + 1, an} times
and thus the worst case blocking time introduced by
7j ismin {n¢ + 1, nJG} max {|Csj.q,p|}. Thus, the

qspPk
worst case blocking time of this type, denoted By
introduced by lower priority tasks is calculated as fol-
lows:

«€hp,

Bi,Q =
> (min{nd + 1,n§} max {|Cs;q,[}) (5)
Pjﬁ/)q, vp

consume up t@RHT, ;. ; of the budgetX, ). The
tasks in the local queue located befeyenay consume
several instances of the budget. Each time the budgetis
consumed the tasks in the local queue will wait for an-
otherRWT, ; time units. When eventually; is at the

top of the local queue the budget may not be enough
andr; has to wait for an additiond@ W7 ;. time units.
Thus, the maximum number of budgets needed until
accesse®, is

[ > 2RHTyx;/Zqk]

7j € T(Rq, Pk ),
Ti#Ti

whereT(R,, Px) is the set of tasks on processBy
sharingR,. Hence, the worst case blocking timemf
each time it requestB, is upper bounded by

[ ). 2RHTyx;/Ze k| RWTy

75 € T(Rq, Pk ),
Ti#Ti

This scenario may occur each time requestsk,,
hence, the total blocking time of on R,, denoted by
B;(R,) is as follows:

Bi(Rq) -

nl [ > 2RHTgy,;/Zy k| RW T,k (6)
7; € 7(Rq,P),
Ti#Ti

The total blocking time of this type, denoted BY 3 is
calculated as follows:

Bis = Z Bi(Ry)

R €RE,
or
Bis = Z g iRWTg 1 )
R,ERE,
where ;i = nl[ Y 2RHT 4 ;/Zgk]
7; € T(Rq,PK),
TiFETi

which is a constant number.

The total blocking time ofr; is the summation of the
three blocking terms:

B; = B;j1+ B2+ B3 (8)

Equation 7 shows thds; 3 is a function of maximum re-

source wait times (e.gRWT ;) of the global resources ac-
3. When a global resource,, is available toP, (i.e., ~ cessed by tasks df},. Consequently; will also be a func-
Z! .(t) > 0), the taskr; at the top ofR,’s local tion qf maximum resource wait times of global resources.
queue will holdR, at most forRHT, . ; time units if ~ Considering thai3; ; and B;, are constant numbers, we
RHT, . ; < Z.,(t) otherwise it self-blocks and sus- can rewrite Equation 8 as follows:

pends. In the case of self-blocking, will remain at
the top of the local queue for an extra duration of time
(i.e., wastes extra time units &},’s budget forR,) up

Bi=ni+ Y agiRWTqu (9)
R4E€RE,

to RHT, 1 ;. Thus each task in the local queue may wherey; = B; 1 + B o.



4 Extracting the Interface of a Processor 5 An Example

In this section we describe how to extract the interface  In this section we present a simple example to illustrate
(requirements)y,, of a processoP;, from the schedulability ~ how MSPIS work.
analysis. The multiprocessor is comprised of two processa?s (
Each requirement in the interface specifies a criteria onand P») and each processor contains a system (task set).
maximum resource wait times (Definition 2) of one or more The systems share two global resourcBs &nd R,). The
global resources. We will show how to evaluate the require- tasks within the system oR; also share a local resource

ment of each task; accessing global shared resources. (Rs). Figure 2 shows the task sets on each processor. A
Starting from schedulbaility condition af;, the maxi- lower index of a task indicates a higher priority, eg., >

mum value of blocking timentbt; thatr; can tolerate with- . In this example each task accesses a resource once, i.e.,

out missing its deadline can be evaluated as follows. a task has one critical section for each resource it accesses

7; is schedulable, using the fixed priority scheduling pol- The length of critical sections are shown in Figure 2.
icy and executed in a single processor, if

. P P
0 <3t <T; rbfep(i,t) <, (10) TR % R’
where rbfep(i,t) denotesrequest bound functiowf r; - 2 o >
which computes the maximum cumulative execution re- 3 - 5 - 7y | 4
guests that could be generated from the time thas re- Ty | 5 - ;
leased up to time and is computed as follows. sl - -
rbfep(i,t) = Ci + Bi + Y ([t/T;]C}) (11) Figure 2: Task sets
pi<pj
By substitutingB; by mtbt; in Equations 10 and 11, we Using Equation 3, resource hold times of global re-
can computentbt; as follows. sourcesRk; and R, by tasks accessing them are as follows:
(1) on processo;: RHT; ;1 = 2, RHT 112 = 7,
mtbt; forriax (t—(Ci+ Y ([t/Ty]C (12)  BHT114=14 RHT, ;5 =10,
pi<p; (2) on processoi’,: RHT 37 = 3, RHT 22 = 4,

RHT17173 == 7, RHT27271 == 2, RHT27272 = 4.

Consequently, using Equation 1 resource hold times of
the global resources on each processor are as follows:
RHTLl = 14, RHT271 = 10, RHTLQ = 7, and
RHT;, = 4. Figure 3 illustrates a snapshot of the tasks
initial execution on processors. The example shows the in-
teraction between tasks and their corresponding blocking o

Note that it is not required to test all possible values of
t in Equation 12, and only a bounded number of values of
t that changebfep(i,t) should be considered (see [7] for
more details).

Equation 9 shows that the total blocking time of tagk
is a function of maximum resource wait times of the global
resources accessed by taskgnWith the achieveadhtbt;

and Equation 9 we extract a requirement: resources. . . .
At time instantl, 75 requestsk;, and sinceR; is free it
Vit Y. 0giRWT,x < mtbt; 12 becomes available t8, andr; will access the resource. At
R,eRS (13) this time instantr, on P; requestsRk; and P; is put into
k the global queue of;. SinceR; is not available taP;,
and is blocked, is put into the local queue Bf and suspends.
- At time instant3, on P, 75 releasesk;. At the same time
= ), aqRWTg < mibt; - (14)  instantr] requests and agcessléﬁbecausézl is still avail-

R,€RE, able to P, (the budget is not finished) and is eligible to

The schedulability of each processor is tested by its in- 8CCessiy, i.e., at time instan8, Z; ,(3) = 7-2 =5
terface. A processoP, is schedulable if all the require- a@ndRHT121 < Z7,(3). At this time instant onPy, 7,
ments inQ, are satisfied. To test the requirementsJp requestsRl but the resource is not available Ry, hence it
we need maximum resource wait times (e T, ;) of is _blo_cked, put into thg local queue &f and susp_ends. At
global resources accessed by taskspnin this paper, we  this time P is not putinto the global queue éf, since,
have assumed, , = RHT,, hence (according to Equa- IS already in the global queue. Similarly at time instant
tion 2) for each global resourde, the maximum resource 74 réquestsi; and is blocked, put into the local queue and

wait time is calculated as follows: suspends. At instari, 3 accessest, (R2 becomes avail-
able toP;). Atinstant6, R, becomes available t& and
RWT, s = » RHT,, (15) 7, (sinceitis atthe head of the local queuerf) preempts

PPy, 73 and accesseR;. At instant7, | requestsRs. Rs is



not available, henc®, is added to the global queue &%

one system, (ii) several systems can be allocated on the

andr; is added to the local queue and suspends. At instantsame processor, (i) a system is distributed on several pro

9, 75, also request®, and is added to the local queue and
suspends. At time instani, ; released?;, at this instant
74 is not eligible to acces®; (RHT; ;4 > Z1,(11)) and
should wait until next time?; becomes available t&;. At
this instantP; is deleted from the head of and is added to the
end of the global queue dt; and R, becomes available to
P, and is accessed hy. At instant14, R, becomes avail-
able toP, andr{ preempts; and accesseR,. Similarly
atinstantl6, 75 accesse®,. Atinstantl7, 74 resumes and
continues accessing;. At instant19, 75 releases?; and
since there is no more tasks in the local qudRebecomes
available toP; and is accessed hy.

Self-Blocked on R 1 ; HE——

HoldingRq : Blockedon R 1:

HoldingR > :
HoldingR3 : m Blocked on R 3 : Emmsmas

Blocked on R ; rsssssssstaasn

0123456 7 8 91011121314151617 181920

Figure 3: MSPIS

6 Conclusion

In this paper, we have discussed that the emerging of
multi-core architectures has arisen the need for methads fo
migrating existing real-time software systems to these pla
forms. The methods should be developed to facilitate co-
existing of several independent/semi-independent need-t

systems on the same multi-core platform in the presence of (5]
shared resources. While considerable work has been done

in the uniprocessor domain, we are not aware of any work to
supportindependently-developedreal-time systems oa the
multiprocessor (multi-core) platform with shared res@stc

In this paper, we have proposed a synchronization pro-

tocol which manages resource sharing among different sys-

tems. We have mentioned three possibilities for coexigtenc
of such systems on a multi-core architecture; (i) a system is

allocated on one processor, i.e., a processor contains only

cessors. Our proposed synchronization protocol supports
the first alternative. However, by using the uniprocessor
techniques for open systems the second alternative can be
transformed to the first alternative. Thus by combining our
protocol and uniprocessor protocols, e.g., SIRAP [4] which
is a protocol for sharing resources among semi-independent
systems (subsystems), both the first and second alternative
can be supported. Extension to the third alternative resnain
as a future work.

Furthermore, we have derived schedulability analysis
under our synchronization protocol and defined an interface
for each processor as a set of requirements. A requirement
is a function of worst-case times that the processor may
wait for global resources. The processors may use differ-
ent scheduling policies and priority settings, howeves thi
does not affect the schedulability analysis of a processor a
processors are abstracted by their interfaces.

Each processor has a budget for each global resource
which is the maximum duration of time that the processor
can hold a global resource. In this paper, we have set this
budget to its minimum value which is the worst-case time
any task on the processor can lock the resource. In the fu-
ture we will work on optimization of distributing budgets
among processors.

Another interesting future work is to study the
multiprocessor hierarchical scheduling protocols for
independent/semi-independent systems with presence of
shared resources.
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