A preliminary idea for an 8-competitive, log, DMAX + log, log, % asymptotic-space,
interface generation algorithm for two-level hierarchica scheduling of
constrained-deadline sporadic tasks on a uniprocessor

Bjorn Andersson
CISTER Research Unit, ISEP/IPP
Polytechnic Institute of Porto
Porto, Portugal
bandersson@dei.isep.ipp.pt

Abstract—Consider a single processor and a software system. (COTS) components can be used. Yet another requirement
The software system comprises components and interfaces may be that two different functionalities should belong to
where each component has an associated interface and each ifferent components because one functionality should not
component comprises a set of constrained-deadline sporadi - .
tasks. A scheduling algorithm (called global scheduler) der- be a_ble tF’ _Obtam 'nformat'on. about another component
mines at each instant which component is active. The active (confidentiality). Furthermore, in order to reduce overall
component uses another scheduling algorithm (called local certification cost (and re-certification cost in the event of
scheduler) to determine which task is selected for executio design changes), it may be desirable for an architecture
on the processor. The interface of a component makes certain to have for each component, functionalities with no more

information about a component visible to other components; th iticality | L Th bl fd .
the interfaces of all components are used for schedulabilit an one criucaiity level. € problem or decomposing a

analysis. We address the problem of generating an interface Software system into components is a significant problem
for a component based on the tasks inside the component. We in the discipline of software engineering (see [4] for an
desire to (i) incur only a small loss in schedulability analgis excellent coverage) but it is not the problem addressed in

due to the interface and (ii) ensure that the amount of space s paper. Therefore, we assume that the decomposition has
(counted in bits) of the interface is small; this is becauseugsh ’
already been done.

an interface hides as much details of the component as poskb . .) o
We present an algorithm for generating such an interface. Typically, a software designer or developing organization
or prime contractor (i) develops or acquires the needed com-
ponents according to the decomposition mentioned above
and then (i) verifies correctness properties of the compbne
Software design for embedded computer systems is afassembly. For some correctness properties (typicallycédgi
fected by the steadily increasing (i) supply of execution-correctness), it holds that the property is dependent only o
speed of microprocessors and (ii) demand from end-users single component. This is ideal because it considerably
for new features and improved application-level perfor-simplifies integration of components into a working system.
mance. Since these two factors increase each year, th#r many other correctness properties, however, the derrec
complexity of embedded software (in terms of number ofness property depends on more than one component. An
lines of code, function points or use cases) has now reacheskample of this is real-time requirements. The response tim
all-time-high levels. One way to deal with this complexity of a task in a component depends on how much other tasks
is to subdivide the software intoomponentsvhere each (for example higher-priority tasks) execute and theserothe
component has an interface (i) which is less complex thamasks may be part of other components. In order determine
its corresponding component and (ii) which describes howif such a correctness property is true, each component must
it interacts or can interact with other components. provide an interface which makes some information about
The problem of decomposing a (future) software systenthe internals of the component visible to other components.
into components is typically driven by requirements on the From systems integration perspective, the interface of a
system. Clearly functional requirements impact how thecomponent should make as little as possible of the internals
decomposition is done but non-functional requiremento(al of the component visible to other components. (We can
called quality-attributes or parafunctional requirensgiplay =~ measure the ‘size’ of an interface as in how many bits are
an important role as well. For example, a requirement mayeeded for storing the information that is made visible.) On
be that two different development teams (with their digdtinc the other hand, the more an interface makes visible to other
expertise) should be able to work only on software thatcomponents, the more accurate information is available to
is within their expertise. Another requirement may be thatschedulability analysis techniques (or other qualityiaute
the decomposition should be done so that already availablenalyses) and this reduces pessimism which can be trashslate

I. INTRODUCTION

into benefits such as (i) lower costs of hardware and/otest can guarantee that all deadlines are met and (ii) the
(ii) lower power ‘consumption’. Therefore, we must strike space required by the interface of a component is asymp-
a suitable balance between schedulability and informatiomotically logs DMAX + log, log, % where DMAX is the
hiding and in order to do so, we must quantify these. maximum relative deadline of all tasks in the component and
The real-time research literature has provided a wealtli/ is the sum of the utilization of all tasks in the component.
of literature on the design of interfaces (see for example The remainder of this paper is organized as follows. Sec-
[8], [9], [7], [5])- The idea is to let each component be tion Il presents the system model and assumptions we make.

characterized by two numbers; typically (i) a bandwidth-Section Il presents some results we will use. Section IV

like metric describing the fraction of the processor that th presents the new algorithm. Section V gives conclusions.

component may use and (ii) a period-like metric describing
the granularity of this distribution of the used processmr ¢
pacity. Some interfaces also allow a third number a, deadlin

which can be used for a component to describe with slightly Al
better accuracy how its requested processing capacity must A2.

be distributed. These interfaces have the benefits thadtgi) t
are easy understand, (ii) they have associated algoritbms f

schedulability analysis and run-time scheduling and these A3.

allow practical issues such as non-processing resources to
be shared between tasks in different components, (iii) they
allow different local scheduling algorithms in different

components and (iv) if all tasks are of the type implicit- A4.

deadline periodic or implicit-deadline sporadic then thssl

of schedulability is typically small. Unfortunately, thes
interfaces can cause very poor performance for constrained
deadline sporadic tasks [1, page 3]. Specifically, therstexi
a task set which is schedulable with preemptive EDF on a
single processor but with these interfaces, deadlinesatann
be guaranteed although a proceskdimes as fast is used;
and this holds for every finite value &f[1, page 3].

Constrained-deadline sporadic tasks are common in prac- A5.

tice. For this reason, it behooves us to design new intesface
for such tasks. These interfaces should not suffer from the

drawback of requiring an infinite speed processor when A6.

a speed-1 processor can do to meet deadlines. Also, the

interfaces should make as little of the internals of the task A7.

sets in a component visible to other components.

Recent advances in interface design [1] has shown that
even for constrained-deadline sporadic tasks, it is ptessib
to create an interface where the loss in schedulability is
provably small (can schedule every task set if provided
a processor 8 times as fast). Unfortunately, it required

((logyn) +1) - ((logy TMAX) + 2) - ((log, DMAX) + 2) - A8.
((logy CMAX) + 1) bits; it is desired to reduce this space. A9.

Therefore, in this paper, we present a new interface gen-
eration algorithm for constrained-deadline sporadic gask
be scheduled on a single processor. We consider preemptive
EDF to be used to as a scheduler in each component (local
scheduler) and preemptive EDF to be used to schedule
components upon the processor (global scheduler). The new
interface generation algorithm offers two salient feature
(i) for each task set which is feasible on a single 1-speed
processor, it holds that if these tasks would be in companent

and scheduled on an 8-speed processor and the new interface A10.

generation algorithm is used then an offline schedulability

Il. SYSTEM MODEL

We consider a system with the following assumptions:

The system has a single processor;

The software is composed of a s€OMP=
{COMP?, COMP?, ..., COMPX} of K compo-
nents;

A component COMP* is composed of a
set h={rf, 7%, 7%, ..., 7.} of n¥ constrained-
deadline sporadic tasks (note that in this way, we
restrict our attention to a 2-level hierarchy);

A constrained-deadline sporadic task is char-
acterized by the parametef¥, CF, DF with the
interpretation that? releases a (possibly infinite)
sequence of jobs with at lea%t* time units be-
tween successive jobs of task and each job of
¥ requiresC¥ units of execution to be performed
at leastD¥ time units after the release of the job.
It is assumed that the release times of jobs cannot
be controlled by the scheduling algorithm;

A task which executes fod. time units on a
processor of speed completesL - S units of
execution;

If the speed of a processor is not explicitly speci-
fied, it is assumed that the speed is one;

The parameterg*, C¥, DF are integers (we use
the assumption of integer parameters only because
it simplifies our discussion about the amount of
storage needed for task sets and interfaces); arrivals
of tasks are allowed to occur at non-integer times
and preemptions are allowed to occur at non-
integer times as well;

A task needs no other resource than a processor;
A component COMPX has a static interface
STATIC_INTERFACEX and a dynamic interface
DYNAMIC_INTERFACEK. The static interface

is composed of variables that remain constant
over time (for example, pre-specified bandwidth)
whereas the dynamic interface is composed of
variables that may change with time (for example,
a variable indicating whether there is any task in
the component with unfinished execution at current
time);

There is a global scheduléiLOBAL_SCHED
which decides at run-time, at every instant, which

Global scheduler,
EDF

Local scheduler,
EDF

T=10 Ty=10 Tj=20 T,/=20
D/=8 D=9 Di=9 D/=17
Gi=l CGl=l G2 Cf=2

" m
12 n
0 o n
5 - s
!/) [
3 £ 6
B — . e
2 i 2 p=t
/
o / o
) s s momon oy ow oAz s s 7 s momomow oW o

(a) A small example. (The interfaces and the schedulahifists aréb) lllustrations ofdbf, dbfx, dbf * * anddbf * *x for the tasks
not shown.) in Figure 1(a).

Figure 1: A small example of the type of system we consideraad some important concept we will use.

All.

Al2.
Al3.

Al4.

Al5.

Al6.

Al8.

Al19.

A20.

component is assigned the processor. In every Figure 1(a) shows an example of such a system.
componentCOMPY, there is a local scheduler Recall that we address the problem of deciding which
LOCAL_SCHED¥, parameters should be used to represent the interfaces and
The global scheduler takes decisions based ohow to select parameters for them and how the dynamic
both the static and the dynamic interface of all interface should be used at run-time. We are interested in
components; doing so and fulfilling the following two (often conflicting)
The global scheduler is EDF [6]; requirements:

The local scheduler cfFOMPX executes a task in R1.
7% at timet if the global scheduler has assigned
the processor t€ OMP¥ at timet;

The loss in schedulability should be small;
R2. The interface of a component should reveal as little

X o as possible about the tasks in the component.
The local scheduler in a component takes decisions For th ¢ di . dt i
based only on the properties of the tasks in the or the purpose of-our discussion, we need 1o guan ity
component; how well an interface fulfills the two requirements above.

The local scheduler in each component is EDF [6].Therefore, we will define the conceptempetitive raticand

There is a schedulability test for the global Sched’_”narrowness”. The former is related to R1 and the latter is
related to R2.

uler and a schedulability test for each local sched- h intert) lorithn h

uler; these schedulability tests are used before run- W€ Say that an interface generation algorithn has
time: competitive ratioR if R is the smallest number such that
The’schedulability test for the global schedulerit holds that for every constrained-deadline sporadic task
does not know tasks in each component and it doesSet partitioned into components, that if this task set can
not know the dynamic interface of components be scheduled on a single processor with EDF directly on

The schedulability test for the global schedulerthe processor (that is, without components and without a
takes as input the static interface of all componentsgl()bal scheduler) then this task set can be guaranteed tb mee
and outputs ‘schedulable’ or ‘unschedulable’: its deadlines as well with interface generation algoritAm
The schedulability test for the local scheduler Ofprovided that the processor 8 times as fast. Clearly, a
COMPX only knows the tasks inr* and the low competitive ratio is desired?=1 is the best one can get.
interface of COMP. The schedulability test for R=00 suggests that we pay a high price for compositionality.
the local schedulgEOMP* takes as input the tasks In order to characterize the "narrowness” of the interface,
in 7* and the interface offOMP* and outputs & consider the amount of storage needed to describe the

‘schedulable’ or ‘unschedulable’. interface.

There is an interface generation algorithm. This
algorithm takes as input all tasks in one component
and generates the static interface for this compoa. Scheduling theory
nent. The interface should be generated so that for
each component, the local schedulability test out-
puts ‘schedulable’. For this reason, it follows that IS
once interfaces have been generated, determining [13
all tasks meet their deadline amounts to performing
only the global schedulability test. dbf(7}*, L) = max(0, L

IIl. RESULTS WE WILL USE

1) Previously known resultsThe demand-bound function
a common concept for performing schedulability analysis
]. The demand-bound function of a tasf is defined as:

L — Dk

|+ve o

i

Since we consider constrained-deadline sporadic tasks (fo 2) New results:We say that an integel is a two-power

which D¥ < T*) we can rewrite it as: if L there is a non-negative integérsuch thatL can be
. . written asL = 2'. Clearly, 2 is a two-power; 4 is a two-
dbf(r¥,L) = {L +T k_ D; J e (2) power; 8 is a two-power. But also 0 and 1 are two-powers.
T; Recall thatdbf* is an upper bound odbf. We will now

definedbf x x which is an upper bound odbfx. We will

7 k .
We can also define an upper bounddisf of a taskr,” as: do so by obtaining thelbfx at a value ofL, such thatl is

0 if L < Dk a two-power. Sincelbfx is monotonically increasing with
dbfx() { K K CF . L (3) L, it holds that the value obtained is also an upper bound
k4 (L—DF) .- & fL>D! : :
7+ i) Tt Bh=H on dbfx for all values less thai.. Formally, we define the
It has been shown in previous research (see for exampf@!lowing:
Equation 3 in [2]) that dbf = *(Tk,L) — dbf*(Tk,2“°g2 L]) (12)
k k k
dbf(7", L) < dbfix(ri", L) < 2- dbf(7}", L) (4) In addition, we define:
We can define these concepts also for tasks in a compo- dbf * sx(1%, L) = (13)
nentk. Hence we get: { oog, dbfsx(7*,L)] if dbf + (75, 1) > 0
L+TF— DF 0 otherwise
dbf(7%, L) = {7% JJ el (5)
T J) K e
rherh J Let us also defindJ«~ as:
1 : k
Usk = | e if U >0
dbfx(rh, L) = > dbfx(r (6) 0 otherwise
mpert Clearly, we have:
k k
dbE(r*, L) < dbf#(*, L) < 2. dbf(r¥, L) 7) dbi(r", L) < dbix(r ', L)
< dbf * x(7") < dbf * #x(7% L) (14)
Figure 1(b) illustrates these concepts.))
Let us also defind’x as: Lemma 2:If EDF is used as a local scheduler in each
- component and EDF is used as the global scheduler and
j Uxk <1 and
Uk — Z _Jk (8) k=1 k Ux" <
Tyerk) VL € {1,2,3,...,DMAX} : Z dbf x sx(7F L) < L (15)
We also definddMAXX as: =1 K
then all deadlines are met.
DMAX® = I{laxk D} ()] Proof: Follows from Lemma 1 and the fact that* <
< Uxk anddbfx (7", L) < dbf # sx(7*, L). -
and We will see later in this paper that the function
dbf x +x(7*, L) for componentk can be represented in a
DMAX = ke{{ngax) DMAXX (10) compact form ifdbf x (7%, L) only needs to be evaluated

for L € [1,20°82 DMAX®]] ‘We should we aware that dif-
We letT denote the union of tasks in all components. Weferent components may have different maximum deadlines

can clearly define the functionif anddbfx for = as well. however so when we wish to perform schedulability analysis
We can use the concept dbfx to check schedulability of a system comprising such components, we will need
— Lemma 1 shows this. to evaluatedbf = (7%, L) for large values ofL. For this

Lemma 1:1f EDF is used as a local scheduler in eachreason, let us define the following:
component and EDF is used as the global scheduler and .
Zk:l,,KUkSl and dbf « « « x(7F, L) =

{ dbf « xx (7R, L) if L < 2flos2 DMAXK]
——y _ afloga DMAXKT) 1,k otherwise
VL €{1,2,3,...,DMAX}: > dbfx(r" L) <L (11) e e v "
k=1..K
) Clearly, we have:
then all deadlines are met.

Proof: Follows from [3] and Equation 4. B VL e [1..2M1082 DMAXS]) L bt s (75 L) < dbf % # #(7%, L)

and Considering Lemma 3, we can represent a compokent
by <a*, sequence_numberk, util_reprk>. Figure 3 shows
this representation. In order to know if this is an efficient
representation however, we need to find an upper bound on
sequence_numberk and therefore, let us turn our attention
VL > 1 : dbfx(7% L) < dbf * * % x(7", L) to combinatorics.

VL € [1..27108: DMAXS]) o qhf g s (7% L) < dbf # % # #(7%, L)

Together this gives us:

Lemma 3:If EDF is used as a local scheduler in eachB. Combinatorics
component and EDF is used as the global scheduler and

. Ust<1and When proving the space required for our new interface

later in this paper, we will need a result in combinatorics.
VL € {1,2,3,...,2/0se DMAX T}, Z dbf + %« x(r¥, L) < [This section proves that result in combinatorics.

Let us consider sequences of non-negative integers such
that the elements in the sequence are in non-descending
order. An example of such a sequence<i4,4,5>. An-

- g) .] other example of such a sequence<i§,2,6,9,9,9,9,19.
3) Discussion about repreisentatlorF:or |IIustrat2|ve PU- et T(a, 3) denote the number of unique sequencesvof
pose, let us showdbf « +x(r", L) and dbf « (7%, L) i glements such that the elements of the sequence is non-

tabular form and show them only for those L which are yogcending and the last element is at mastt is assumed
two-powers (because the function changes only at th9se 5 , and 3 are positive integers. Figure 4 illustrates this.

The upper part of Figure 2a shows this. Wedétdenote the Let us now reason about how to compGtéx, 3). Let ¢

number of suchL—vaIucis in cqmponerif such that2theL- denote the last number in the sequence. It is a number at
value is at mosDMAXE. In this caseq” = 6 anda” = 4. most 5 and at least 0. We know that whatever number we

k=1..K

then all deadlines are met.
Proof: Follows from the reasoning above. []

ink oa
In general, we obtain.” as: pick, the remaining sequence would have a length 1.
a* = Mlog, DMAXX] + 1 (16) Hence we obtain that:
B
If a certain value oflbf * xx is zero then we can represent T(a, B) = Z T(a—1,q) (17)
that with a zero. If a certain value @fbf * « is non-zero q=0

however, then we can (since it is a two-power) represent itrhis can be rewritten as:
by the logarithm of the value and then add one. This gives

. : p-1
us, for each component, a sequence which characterizes . _ B
dbf *x xx of the component. The lower part of Figure 2a (e, B) = (;T(a Lg)+T(a—15) (18)

shows this. The length of the sequence is determined by . . o
o; component 1 has a sequence of length= 6 whereas Observing that Fhe left term on the right-hand side is equal
component 2 has a sequence of length= 4. to T'(, 6 — 1) gives us:
Given that component 1 can be represented by a string T(e,3) =T(e, —1) + T(a — 1, 5) (19)
of a; = 6 numbers such that a number is at least zero
and at mosty; = 6 and the numbers in the sequence are It also holds that:
npn-descending, let us consider all su_ch possible segsence VB>1:T(a=1,8)=F+1 (20)
Figure 2c shows this fon! = 6 which is relevant for
component 1. Figure 2d shows this fof = 4 which is and
relevant for component 2.
We can therefore represedibf * ++ for component: for
values within [LDMAXX] with a single integer; we call Given these equations, we are now interested in finding an
it the sequence number of the component. For examplejpper bound o’ («, 3) as a closed-form expression.
dbf * xx for component for values vlvithin [1DMAXX) can Lemma 4:
be represented byequence_number’ = 44. Also, dbf * *x) o
for component2 for values within [LDMAXX] can be Va>1,821:T(af) <2%" (22)
represented byequence_number? = 3. Proof: Let us consider the claim:
Figure 2b shows how we can represéht*. We compute
Ux* from U*. If U* is zero then we can represefit<”
with the number zero. I/* is one then we can represent where! is a positive integer.
U+* with the number one. It/* is half or smaller then we If we can prove Inequality 23 for each> 1 then we
can represent/+* with the number|log, 7= |+1. We let know that Inequality 22 is true. We will prove Inequality 23
util_repr® denote the number representitig*. by using induction orl.

Va>1:T(a,f=1)=a+1 (21)

Va>1,6>1:a+p<1:T(a,p) <2°%P (23)

b 1] 2 a4l 5| 1] 2component | 1| 2]
o] 0 1 8 16 W

dbf***(7L,L) (o} 0.436111 0.200000

dbf***(72,L) 0 0 0 4 4 8 (=S 0.500000 0.250000
U*kcan be rewritten as z2 z2
Number representing U*k 2 3

Sequence for 0 (o] [0] 1 4 5

interface of

component1

Sequence for 0 0 0 3 3 4

interface of

component2

(@) Table ofdbf * +x(71, L) anddbf * %x(72, L) and show- (b) Interface of component 1 and component 2

ing how sequences are generated.

has the 6-element-sequence-identifier has the 4-element-sequence-identifier
0 0

O O O o o o o o o
O O O O O o o O o
O O O O O O O O O
©O o o o o o o o
H B O O O O © O
N B O 0~ W N P O
0 N O A W N P O
© 0 N O U A W N R O

B
= O

O O O OO OO0 OO O O O O
I~
N

©O O O O O O OO OO O O O ©
W W NN NP P B P OO0 O O o

A WA WM R WN R M WN RO

[y
w

6 6 6 6 6 6 912 4 4 4 4 70

(c) Table showing the set of sequences ddr= 6 and theifd) Table showing the set of sequences ddr= 4 and their
6-element-sequence number. 4-element-sequence number.

Figure 2: Fromdbf « xx to sequence number and also how to represent utilization.

Representation of Component 1

<6,44,2>

Representation of Component 2

<4,3,3>

Figure 3: Interfaces for component 1 and component 2.

Base case We claim: Inequality 23 is true fof = 1. Considering Inequalities 24 and 25, leg and 5, denote
For this case we obtain that=1 and3 = 1 and using the values which exist in Inequality 25. This gives us:
Inequality 20 gives usT'(a« = 1,8 = 1) = 2. Hence, the
base case is true. o140
Induction step We claim: If Inequality 23 is true for T(ag —1,06) < 2% ’ (26)
I = k then Inequality 23 is true fof = k£ + 1. and
We prove the induction step by contradiction. Suppose

that the induction step would be false. Then there is a T(ag, By — 1) < 200FFo—1 27)
positive integerk such that the following two inequalities

are true: and

Va>1,8>1such that a+ 8 < k: T (e, 3) < 2015 (24) T(av, Bo) > a0 tho (28)
and Applying Inequality 19 onyy and 3, gives us:

Ja>1,8>1suchthat a + B =k+1:T(a,8) > 2P (25) T(ag, o) = T(a, fo — 1) + T — 1, Bp) (29)

R
3 4 5 6 7
2 6 10 15 21 28
10 20 35 56 84
15 35 70 126 210
21 56 126 256 466

28 84 210 466 912

N o oa s wN

Figure 4: Tabular specification of the functi@i{«, ().

Applying Inequality 29 on Inequalities 26, 27 and 28 yields: gives us the numbentil_repr = |log, %J. This can be
stored with asymptotically with{log,|log, o] bits. We

can use two bits to decide which of the three above cases is
We can observe that the two terms on the right-hand sidéhe case. Henceytil_repr requires asymptotically at most

2ao+ﬁo < 2a0+ﬁ0,1 + 2060*1+[50 (30)

are the same. Hence, rewriting yields: [log,|log, ﬁﬂ.
gaotBo < gaotho-1 . g (31) Putting all this t_ogether gives us that an upper l_aound
on the space required for the interface of comporieig
Further rewriting yields: asymptotically:
[e3% o 1
gaotho < geoth (32) log,(DMAX®) + log, log, Tk (34)

This is a contradiction. Hence the induction step is true.

. . : Let us now reason about the competitive ratio. Let us
Since both the base case and the induction step are true, ~ . .
. . : . . consider a componerit and let us consider a value and
the induction argument yields Inequality 23 is true for each o Mog, DMAXK] :
. compare it with2!'°sz and reason about the loss in
[> 1. Hence the lemma is true.

terms of schedulability.

Lemma 5: 1) If L < 2M°eDMAX*] then we can reason as
follows. The approximation ofdbf x xx(r, L) by
Va2 1:T (o, a) < 4% (33) dbf % = % #(7, L) causes no loss. The approximation
Proof: Follows from Lemma. 4. - of dbf x (7, L) by dbf = *x(7, L) causes a loss by
a factor of two. The approximation efbfx(r, L) by
C. Encoding and decoding sequences dbf * x(, L) causes a loss by a factor of two. The
Recall that we can represent a sequence as a sequence approximation ofdbf(r, L) by dbfx(r,L) causes a
number. Figure 5a and 5b provides us with functions for loss by a factor of two. Hence, we lose a factor of
doing this encoding/decoding. eight.

2) If L > 2M°e2DMAX*] then we can reason as fol-
lows. When we computelbf x * (7, L) we have
Figure 6 shows pseudocode for generating the interface of ~ two terms. One isdbf * xx(7,L) and the other is

a component. Let us now compute (asymptotically) the space (L — 9[log, DMAX“W) . Ux*. Let us discuss the term

IV. THE NEW ALGORITHM

needed (in bits) for the interface o*, sequence_number”, dbf % +x(7, L). The approximation ofdbf * (7, L)
util_repr” >. The space needed far* is (asymptotically) by dbf % sx(7, L) causes a loss by a factor of two.
[log, o] and using the expression fof* gives us that the The approximation ofdbfx(r, L) by dbf * x(r, L)
storage fora* is [log,(log, DMAXX)]. causes no loss. The approximation &if(r, L) by
The space needed feequence_number” is asymptoti- dbfx(r, L) causes a loss by a factor of two. Hence,
cally [log, (sequence_number®)]. Using Lemma 5 gives us we lose a factor of four. Let us discuss the term
that the space needed farquence_number” is asymptoti- (L — 2Mosz DMAXk1) - Ux*. The approximation ot/*
cally at most[2 - log,(2 - DMAX¥)]. by Ux* cause a loss by a factor of two. The loss
Let us now discuss the space needed f6il_repr. If in schedulability because of our approximation of
U* = 0 thenU+" = 0. This gives usutil repr = 0 which dbf * x % (7, L) is the maximum of the two terms.
requires just a single bit. /¥ > 1/2 thenUx* = 1. This Hence, we lose a factor of eight.
gives usutil_repr = 1 which requirest just a single bit pgaqeq on this reasoning, we can see that our new schedu-
as well. If0 < U* < 1/2 thenUx* = —L2 . This ’

gllosa gl lability test which takes input from our interface genavati

function encode_sequence(s:sequence; o integer) return integer is 1. function decode_sequence(seq_num :integer; o @ integer] return sequence of integers is

2. begin 2. begin
3 generate a table with Trow,col] values for rows{1, 2,.., c}jand col={ 1, 2,..., a} 3. generate a table with T(row,col] values for rows{1, 2,..., a}and cel{ 1, 2,..., ot}
4, according to Equation 20, 21 and 22. 4, according to Equation 20, 21 and 22.
5. row :=g; c baseline :=0 5. row := o col := o; baseline :=0; s := empty_sequence
6. oldelemen 0; newelement := head(s); diff := newelement — oldelement 6. while (row>1) do
7. while {row=1) do 7. j:=0
8 for] :=0 to dift-1 do 8. lo_limi 0; hi_limit := Tlrow-1, col]-1
g baseline := baseline + T{row-1, col-j] 9. while not ({lo_limit<=seq_num| and (seq_num<=hi_limit}} do
10. end for 10. =i+l
11. oldelement := newelement; newelement := head(s); diff := newelement - oldelemant 11. lo_limit :=hi_limit + L; hi_limit := hi_limit + T[row-1, col-j]
12 12 end for
13. 13. 5 :=concatenate s and the number |
14 baseline := baseline + diff 14, seq_num :=seg_num — le_limit; ro. v—1;col :=col -]
15. return baseline 15. end while
16. end function 16 return s
17. endfunction
(a) Encoding. (b) Decoding

Figure 5: Encoding and decoding of sequence numbers.

1. function calc_dbf****_for(sq:sequence; UBDMAX® :integer; U** : real number; L : integer) return integer is
2. begin

3. if L <= UBDMAX" then

a number := sqf ceil(log2{L)] +11]

5. if number=0 then return 0 else return 2*(number-1) end if

6. else

7. return calc_dbf****_for(sq, UBDMAX®, U™, UBDMAXY) + (L- UBDMAX¥) * U*;

8. end if

5. end

10. function perform_schedulability_analysis{ sc : set of components) retum boclean is

11. begin
12. foreach component kin scdo
13. 5%:= decode_sequence(sequence_number” , o)
14. UBDMAXE = 20k -1)
. . . 15, U#* = decode_util_star{ util_repr¥)
1. function create_interface(k :integer) return <integer,integer,integer> is 16. endfor
2. begin 17. i, U™ >1then return false endif
3. U¥:=compute Ufor component kusing Equation 8; U™ := compute U** based on UF using Equation 14 18, UBDMAX := max,... UBDMAX®
4. DMAX* := compute DMAX* using Equation S; o == compute o* based on DMAX* using Equation 17 19. foreachLin (1'2'_:: UBDMAX) do
5. %= compute sequence_numbert based on dbf*** as shown in Section 343 20. sumdbf 1= 0
6 Sﬁf‘uﬁ’"fif number* : (de?,fquE"(Ei 55, o¥) 21. if for each compenent kin sc do sumdbf := sumdbf + calc_dbf****_for{ ¥, UBDMAX, U, L) end if
7 util_repr* := encede_Utilstar(U**) 22. if sumdbf=L thenreturn false end if
8 interfacek := < o¥, sequence_number®, util_repr® = 23. endfor
s return interfacek 24, return true
10. end 25. end
(a) Creating an interface. (b) Performing schedulability analysis

Figure 6: Creating an interface and using interfaces fofopeting schedulability analysis.

algorithm gives us a competitive ratio of eight. [3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Scheduling hard-
real-time sporadic tasks on one processor. Pmc. of 11th
V. CONCLUSION Real-Time Systems Symposium (RTB&)es 182-190, 1990.

We have shown an 8-competitivelog, DMAX +
log, log, % space, interface generation algorithm for [4l
constrained-deadline sporadic tasks on a single processor
We gave an informal argument why it is 8-competitive but[5] A. Easwaran, M. Anand, and I. Lee. Compositional analysi

left open the problem of proving it. framework using EDP resource models.RAroc. of 28th Real-
Time Systems Symposium (RT$8yes 129-138, 2007.

L. Bass, P. Clements, and R. Kazma8oftware Architecture
in Practice Addison Wesley, second edition, 2003.

Acknowledgements

This work was partially funded by the Portuguese Sciencé?l C: L. Liu and J. W. Layland. Scheduling algorithms for
. - . multiprogramming in a hard real-time environmentournal
and Technology Foundation (Fundagao para a Ciéncia € a ¢ the Association for the Computing MachineB0:46—61,
Tecnologia - FCT) and the European Commission through 1973,

grant ArtistDesign ICT-NoE-214373 and Luso-American

Development Foundation (FLAD). [7] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. IiProc. of 7th IEEE Real-Time Technology and
REFERENCES Applications Symposium (RTA®Rges 75-84, 2001.

[1] B. Andersson. A pseudo-medium-wide 8-competitive in- . - "
terface for two-level compositional real-time scheduling (8] I Shm and I. Lee. Periodic resource model for.composml
constrained-deadline sporadic tasks on a uniprocesserom real-tlme guarantees. IRroc. of 24th Real-Time Systems
of 2nd Workshop on Compositional Theory and Technology for ~ SYMPosium (RTSSjages 2-10, 2003.

Real-Time Embedded Syst Co-located with RPB8Y.
eal-Time Embedded Systems (Co-located with R2S8) [9] I. Shin and I. Lee. Compositional real-time schedulingnfie-

[2] S. Baruah and N. Fisher. The partitioned multiprocessor ~ WOrk. In Proc. of 25th Real-Time Systems Symposium (RTSS)
scheduling of deadline-constrained sporadic task systems Pages 57-67, 2004.
IEEE Transactions on Computers5(7):918-923, 2006.

