
Implementation of Compositional Scheduling Framework on Virtualization

Jungwoo Yang, Hyungseok Kim, Sangwon Park, Changki Hong and Insik Shin
Department of Computer Science, KAIST,

373-1 Gusung-Dong, Yusung-Gu, Daejeon 305-701, South Korea
{jungwoo.yang, witbring, hudoni, ckhong, insik.shin}@kaist.ac.kr

Abstract—Virtualization has been receiving increasing at-
tention in embedded real-time systems. However, real-time
systems, whose correctness depends on timing requirements,
are not easily applicable to virtualization since virtualiza-
tion mainly focuses on functional correctness. A hierarchical
scheduling framework (HSF) provides a method of composing
the complex timing requirements of real-time systems. There
have been several works on the implementation of the HSF.
Although the scheduling framework of virtualization directly
corresponds to the HSF, they did not consider implementing
the HSF on virtualization. In this paper, we implement a two-
level HSF, where components use a periodic interface model
using virtualization. We use an L4/Fiasco micro-kernel as a
virtual machine monitor (VMM) and an L4Linux as a virtual
machine (VM) and extend these to support real-time properties.
The experimental results show that the HSF is suitable for the
virtualization environment.

Keywords-Real-time scheduling, Compositional real-time
guarantees, Virtualization

I. INTRODUCTION

Virtualization has been receiving an increasing amount of
attention in embedded real-time systems [1]. Virtualization is
a methodology of dividing the resources of a computer into
multiple execution environments, and it offers many benefits.
First, it supports heterogeneous operating system environ-
ments, even on a single processor. The general purpose OSs
and real-time OSs are allowed to run on the same processor
concurrently. Second, it supports architectural abstraction
so that the same software architecture can be migrated,
essentially unchanged, between different systems. Third, a
scalable hypervisor is able to adjust the number of cores for
an application domain in a multicore environment. Fourth,
virtualization can provide security. Even if one of the guest
OSs has security flaws, the other guest OSs are able to
remain safe. Moreover, it supports the efficient distribution
of application software by shipping the program together
with its own OS image.

Virtualization uses a layer of software that provides an il-
lusion of a real machine to multiple instances of a virtual ma-
chine (VM) or guest OSs. This layer is traditionally called a
virtual machine monitor (VMM) or hypervisor. The hypervi-
sor allows multiple operating systems to run concurrently on
a host computer. The scheduling framework of virtualization
directly corresponds to a hierarchical scheduling framework
(HSF) [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The

Figure 1. The architecture of the hierarchical scheduling framework.

HSF is introduced to support CPU time sharing among ap-
plications (components) under different scheduling services.
A typical example of the HSF is a two-level scheduling
framework consisting of a system scheduler and a number
of component schedulers (see Figure 1). Under the system-
wide scheduling, the system scheduler allocates the CPU
to components. Under the component-wide scheduling, the
component scheduler inside each component subsequently
allocates a share of CPU (given to the component by the
system scheduler) to its own internal tasks. In Figure 1, the
system scheduler of the system corresponds to the VMM’s
scheduler, and each component of the system corresponds to
the VM running on top of the VMM. Since each VM has its
own operating system, the OS’s scheduler can be considered
as the component scheduler in the two-level hierarchical
scheduling framework. Applications running on top of the
VM correspond to internal tasks inside the component.

There have been several works on the implementation of
the HSF. Behnam et al. [13] implemented a two-level HSF
in a commercial real-time operating system, VxWorks. Each
component in the system is a set of periodic tasks, and each
component specifies the collective real-time requirements
of its internal tasks in the form of a periodic interface
model. By using the periodic interface model in the HSF,
the system scheduler provides the component with CPU re-
sources according to the timing requirements imposed by its
component interface. When a component receives the CPU,
a user scheduling routine (USR), which is shared by every
component, is triggered to schedule internal tasks depending
on a real-time scheduling algorithm of the component. The



USR changes the priority of each internal task in terms
of the scheduling algorithm, and then puts a tasks in the
ready queue (priority queue) of the system scheduler. Heuvel
et al. [14] implemented the HSF with SRP-based synchro-
nization protocols in a real-time operating system, µC/OS-
II. They implemented the stack resource policy (SRP) as
a component synchronization protocol and implemented
HSRP and SIRAP as the system SRP-based synchronization
protocol. Moreover, they investigated the system overhead
induced by the synchronization primitives of each protocol.
Both works implemented the HSF in real-time operating
systems, but they did not consider virtualization.

In this paper, we implement a two-level HSF, where
components use the periodic interface model using virtu-
alization. We use an L4/Fiasco micro-kernel as a VMM
and an L4Linux as a virtual machine. We extend the
L4/Fiasco micro-kernel to provide the separation between
the L4/Fiasco micro-kernel and the L4Linux and support the
schedulability in a compositional manner from components
to the system. We extend the L4Linux to support real-time
scheduling algorithms. In addition, we revise the L4Linux
micro-kernel such that it can compose the collective timing
requirements of its internal tasks into its periodic interface
and pass the interface to the L4/Fiasco micro-kernel. Our
evaluation shows that it is feasible to implement HSF over
virtualization for compositional schedulability with small
overheads. In particular, it shows that periodic component
interfaces can be efficiently derived out of a set of internal
tasks, and it can effectively enforce VM scheduling over the
L4/Fiasco micro-kernel at low cost.

The rest of this paper is organized as follows: Section
2 presents an overview of the system. Section 3 describes
system architecture and implementation details. In Section
4 we provide comparisons among our implementation and
other systems in terms of the deadline miss, and then
compute an overhead of our approach.

II. OVERVIEW

Figure 2 illustrates a hierarchical real-time system with
virtualization. A hypervisor runs on the actual machine with
proper abstraction towards its guest OSs. More than one
guest OSs can be executed upon the hypervisor. They are
scheduled by the real-time scheduler of the hypervisor. We
consider that each guest OS supports periodic real-time
tasks, and it has its own internal real-time scheduler so
that the real-time tasks running on the guest OSs can be
scheduled under the particular scheduling policy of their
guest OS.

In such an environment, we consider that the hypervisor
schedules its guest OSs to satisfy the real-time requirements
of the individual internal periodic tasks of each guest OS.
The hypervisor may fail to allocate the processor to guest
OSs satisfying such real-time requirements if the hypervisor

Figure 2. Hierarchical Real-Time System Architecture.

does not explicitly consider the requirements in its schedul-
ing policy. For example, suppose that the scheduling algo-
rithm of a hypervisor is the ‘round robin algorithm’. Each
guest OS will be scheduled in a fair manner, but without
consideration of its internal tasks’ real-time constraint. In
this case, a guest OS can miss a deadline if the guest OS
has an internal task approaching its deadline with remaining
execution, while the hypervisor schedules other guest OSs
until the deadline. Hence, it entails a scheduling framework
where the hypervisor is aware of the urgency of individual
guest OSs. We assume that there is no dependency between
guest OSs, as well as real-time tasks.

Note that the hierarchical real-time system with virtu-
alization naturally brings up the HSF. Each guest OS is
associated with a component, and the scheduler of the
hypervisor is associated with the system scheduler. Each
guest OS composes the collective timing requirements of
its real-time internal tasks into its periodic interface and
passes the interface to the hypervisor. We define periodic
interface I as (Π,Θ+), where Π is the guest OS period
and Θ+ is the collective timing requirement needed for the
real-time tasks of the guest OS. The hypervisor supports the
timing requirements by scheduling guest OSs according to
its periodic interfaces.

III. SYSTEM ARCHITECTURE

For the virtualization environment, we use an L4/Fiasco
and an L4Linux as a hypervisor and a para-virtualized guest
OS, respectively. The overall system architecture looks like
Figure 2. We revised L4Linux server to support the periodic
model and real-time scheduling. The L4Linux servers, on
which real-time tasks are running, provide their periodic
interfaces to the L4/Fiasco so that the L4/Fiasco schedules
the L4Linux servers by establishing communication between
components and the L4/Fiasco micro-kernel for passing the
component interfaces.

The design issues of the L4/Fiasco are similar to
L4Linux’s in terms of that each of them schedules the
periodic tasks. For the L4/Fiasco and the L4linux, we
consider following two issues:



Figure 3. The virtualization environment of an L4/Fiasco

1) Supporting a periodic thread(task),
2) Scheduling periodic threads(tasks).

Also, some hierarchical scheduling issues between the
L4/Fiasco and the L4linux are considered.

We define ‘thread’ as a scheduling unit of the L4/Fiasco,
‘task’ as a scheduling unit of the L4Linux, and ‘L4Linux
server’ as a collection of L4/Fiasco threads associated with
one L4Linux to reduce confusion.

A. Hypervisor: L4/Fiasco

Figure 3 illustrates the virtualization environment of an
L4/Fiasco. An L4Linux server consists of several L4/Fiasco
threads such as a linux kernel thread, a timer interrupt thread,
and an idler thread. Once a task is generated in an L4Linux, a
corresponding L4/Fiasco thread is generated in its L4/Fiasco,
as well. We define the corresponding L4/Fiasco thread as
a ‘L4/Fiasco shadow thread’. When the L4Linux kernel
schedules an L4Linux task, the L4Linux kernel wakes up its
corresponding L4/Fiasco shadow thread through IPC1, and
the L4/Fiasco shadow thread executes user code on behalf
of the L4Linux task.

Such the properties generate many issues to consider. In
this section, we consider changing the L4Linux kernel thread
to a periodic thread and scheduling L4Linux servers based
on the timing requirement of its L4Linux kernel thread under
the virtualization environment of the L4/Fiasco.

1) Periodic Thread: Supporting the periodic model in
the L4/Fiasco has already been done and included in the
L4/Fiasco source code developed by Steinberg [15]. The
L4/Fiasco supports two modes, one is a periodic mode
and the other is a conventional mode so that a periodic
thread can coexist with an non-periodic thread. Figure 4
shows the sequence of the states for the periodic model.
In this way, an L4Linux kernel thread is able to en-
ter a periodic thread just by requesting permission from
the admission server. If a thread wants to be a periodic
thread, two functions are required, l4 rt begin periodic()
and l4 rt next period(). l4 rt begin periodic() is invoked

1IPC - Inter Process Communication

Figure 4. Periodic Model State Diagram.

to permit a thread to work on the periodic mode by an
admission server that is responsible to admit an L4/Fiasco
user thread to enter the periodic mode. l4 rt next period()
is used when a thread is ready to enter the periodic mode
or it finishes its periodic job.

A thing we have to consider is how to set up the admission
server. We have two choices, one is to make a new server for
only admission. The other choice is to add admission server
functionalities into any existing server. In this paper, we have
used the latter case since there is a server that is always
loaded before any L4Linux is loaded. an L4/Fiasco loader is
used to start an L4/Fiasco server such as an L4Linux server
at runtime, so we extend the L4/Fiasco loader to operate as
the admission server.

2) Scheduling for periodic threads: Although the
L4/Fiasco supports the periodic model as mentioned, its
scheduler should be changed for a reason. From the view-
point of the L4/Fiasco, the L4Linux consists of one or more
L4/Fiasco threads: one L4/Fiasco thread for the L4Linux
kernel itself and the others for L4/Fiasco shadow threads
that corresponds to L4Linux tasks individually. The periodic
interface of the L4Linux component specifies the collective
timing requirements of its internal tasks. Thus, an L4/Fiasco
is supposed to schedule the L4Linux kernel thread and
other L4/Fiasco shadow threads according to the component
interface. This requires an accounting method that charges
the execution of the L4Linux kernel thread and L4/Fiasco
shadow threads into the execution budget of a corresponding
component.

To simplify the problem, we make some assumptions.
First, a priority of the L4/Fiasco scheduler can be preserved
for the L4Linux kernel thread or L4/Fiasco shadow threads
so that we can distinguish a thread corresponding to the
L4Linux by checking priority. Second, when a thread of one
L4Linux is scheduled, it cannot be preempted by the other
L4Linuxes’ threads except for the interrupt threads. This
assumption is reasonable since we use the RM algorithm
as system scheduling policy, and each L4Linux composes
the interface with the same period.

To solve the problem, we separate the threads of an
L4Linux server. The interrupt threads are not grouped with
an L4Linux kernel thread and L4/Fiasco shadow threads
since interrupt handlers should be executed as soon as it
requested. Hence, interrupt threads have higher priority than



the others so that we consider only the thread corresponding
to an L4Linux kernel and L4/Fiasco shadow threads as a
scheduling group. We assigned the preserved priority into an
L4Linux’s thread other than interrupt threads to identify its
scheduling group so that every thread corresponding to one
L4Linux has same priority. The remaining problem is how
the L4/Fiasco scheduler identifies such a thread’s L4Linux
server for accounting. Each L4/Fiasco shadow thread has a
thread number of its L4Linux kernel as its pager, and the
L4Linux kernel thread number is unique. Therefore, each
linux group can be identified with a distinct number.

A new timeout called a “realtime timeout” is introduced
for the group scheduling. The timeout is set as Θ+ of a
linux’s interface whenever any task of the linux is first
scheduled in a period. When the timeout is set, the other
linux threads cannot be scheduled, other than interrupt
threads. After the timeout expires, the other linux threads can
be scheduled in the same way. By doing this, even though
an L4Linux kernel causes the system to sleep, it can be
awakened immediately whenever its task reaches the ready
state since other L4Linux servers cannot be scheduled while
the realtime timeout is being set.

B. Guest OS: L4Linux

An L4Linux supports the priority preemptive scheduling
policy with 120 different priority levels, but it does not
provide the periodic model. To support the periodic model in
the L4Linux, a timing property representing the period and
the deadline is added into task structure so that tasks are
classified into two types through existence of the property
(i.e., either periodic task or non-periodic task). In internal
real-time scheduling policy, periodic tasks have the highest
priority to assure timing requirements within a guest OS.
We apply the RM scheduling algorithm so a periodic task
can be preempted by any periodic tasks which have shorter
period.

For the hierarchical scheduling, a guest OS should notify
its periodic interface to its hypervisor. When a guest OS
spawns a periodic task, its bounded execution time should
be reevaluated, and then the guest OS notifies the change
to its hypervisor. The hypervisor allocates the CPU to guest
OSs according to the periodic interfaces.

1) Periodic Task: For a periodic task, “task struct” which
is a data structure for a linux task is modified so that
L4Linux kernel can notice the timing requirement of the
periodic task, and several system calls are added as follows,

set_periodic_task(pid, period, WCET)
wait_next_period(pid)

“set periodic task()” is invoked to set the period and the
worst case execution time of a task ‘pid’2, and a periodic

2The worst case execution time is for the calculation of the L4Linux’s
interface

task calls “wait next period()” to release CPU voluntarily
when it finishes its periodic job. These system calls make it
easy to use a programming model for the periodic task. A
pseudo-code for periodic tasks as follows,

Source 1. Periodic Task Example
BEGIN
// Set periodic task as periodic model
set_periodic_task(pid, period, WCET)
WHILE CONDITION
// Wait for next period
wait_next_period(pid)
// Consume resource in WCET
do_peridic_job()

END WHILE
END

2) Scheduling for periodic tasks: We refer to a study
conducted to support a periodic scheduling policy [13]. In
the work, they suggest a user scheduling routine (USR)
to make a task ready at appointed time, and the task
information is stored in a time event queue (TEQ). When
it comes to the next activation time, the USR occurs by
checking the TEQ.

We use the basic mechanism of Behnam’s work [13] to
implement the TEQ. When a periodic task is created, its
next activation time is registered in the TEQ. When the
next activation time of the task comes, its guest OS checks
whether or not the task misses its deadline, and a new next
activation time of the task is re-inserted into the TEQ. After
that, the periodic task enters the ready state immediately.
Checking the TEQ can be done in O(1), and each activation
time of a task can be popped and pushed from/to the TEQ
in O(log n), where n is the number of tasks in the TEQ,
since it is implemented as a priority queue sorted by the
next activation time.

For periodic tasks, we modify the highest priority ready
queue to suit real-time scheduling since all periodic tasks
will be located in the highest priority ready queue. It is
implemented as a priority queue, whereas others are not.
The priority queue contains periodic tasks in sorted order
according to the RM. We are able to simply implement the
EDF by replacing the sort criteria with deadline of each task.

Figure 5 illustrates the implementation of the RM sched-
uler in an L4Linux. When a periodic task finishes its periodic
job, it enters pending state until its next activation time
comes. The periodic task enters ready state and is scheduled
by the RM scheduler if its activation time comes. Once a
periodic task enters ready state, the RM scheduler verifies
that the running periodic task has a higher priority than
the highest priority periodic task in the ready queue. If the
verification fails, preemption occurs. Since every periodic
tasks are located in the highest priority ready queue, it is
scheduled in advance of non-periodic tasks.



Figure 5. Implementation of the RM scheduling in an L4Linux

3) Supporting Hierarchical Scheduling: A guest OS that
has periodic tasks should be considered as a real-time thread
by its hypervisor, and the guest OS should pass its periodic
interface I(Π,Θ+) to the hypervisor when it is changed.
To be specific, when the first periodic task is spawned,
the guest OS should be transformed into a periodic thread
and its interface should be set. After that, the guest OS
just reevaluates the bounded execution time of its interface
whenever a new periodic task is generated. Finally the
interface is given to the hypervisor as a collective timing
requirement of the guest OS. The hypervisor schedules each
guest OS as the periodic thread according to its interface.

However, the interface dynamically changed raises several
issues. First, schedulability issue arises. We assume that
there is no task set whose L4Linux is not schedulable
since the schedulability check can be done by additional
routine based on some theoretical approaches, and a newly
generated periodic task that is not scheduable can be rejected
if necessary. The second issue is the time when the changed
interface is reflected in the hypervisor. For this issue, we
assume that the newly generated task in an L4Linux can
be pending until the next period of the L4Linux so that the
new task can be scheduled from the next period since the
hypervisor schedules the L4Linux according to the changed
interface from next period.

C. Compositional Real-time Guarantees

Shin et. al., [2] introduced a compositional real-time
model. Compositional real-time model indicates that when
there are some real-time components having their own
scheduler, each component can be composed as a periodic
interface I(Π,Θ+). Thus each component can be handled
as periodic real-time task. We have implemented the RM
scheduler in the L4Linux, so we could exploit theorem 6
in [2].

Theorem (Periodic Capacity Bound for RM) For a
given periodic workload set W , period Π under the RM

scheduling algorithm, bounded execution time Θ+ for a
periodic partition resource Γ is

Θ+ = max
∀Ti∈W

(
−(pi − 2Π) +

√
(pi − 2Π)2 + 8ΠIi
4

)
, (1)

where

Ii = ei +
∑

Tk∈HP (W,Ti)

⌈
pi
pk

⌉
· ek, (2)

pi is period of task i, and ei is execution time of task i.

In order to use the theorem, a given fixed period Π
should be provided to the L4Linux. In our implementation,
we decide the period Π as 0.5s.3 Whenever a real-time
task is generated in the L4Linux, it calculates its own new
Θ+ by using the theorem and its workloads. Since the
linux kernel does not support a floating division, we use
do div() function that divides unsigned 64bit integer, which
represents time property in nano seconds.

The calculated Θ+ is sent to its L4/Fiasco kernel through
a hypercall. The hypercall of the L4/Fiasco is exactly the
same as system call in the L4/Fiasco, so the L4Linux just
invokes l4 rt change timeslice() system call with a new Θ+

to apply its new interface.

IV. EXPERIMENTS

We evaluate the performance and overheads of our HSF
implementation to the L4/Fiasco micro-kernel. We measured
deadline miss ratio to see whether the HSF implementation
can be applicable real-time systems. We also measured how
much overheads our HSF implementation introduces.

The environments are L4/Fiasco-1.2, L4Env revision of
467, and L4Linux-2.6.31. The system for experiment is
equipped with an AMD Athlon Dual Core 2.0Ghz and 3GB
of main memory. Since the L4/Fiasco micro-kernel supports
only a uni-processor, our experiments take place only on a
single core, even though the system is equipped with multi-
cores.

A. Deadline Miss

In this section, we present the measured deadline miss
under diverse scheduling policies. For the experiments, a
hypervisor consists of two VMs that have the real-time
workloads. We assume that each component has an interface
period p of 0.5 second. During the experiments, each peri-
odic task is a processor-intensive task. Each job of the task
is dropped if its previous job misses a deadline. Otherwise,
it is possible to continue to generate deadline misses. We
have the following scheduling policies in experiments,

1) the round robin scheduling policy ρ1,

3The relative overheads generated by other system threads such as
interrupt thread is large if its period is too short. On the other hand, longer
period of the L4Linux generates large abstraction overhead in the periodic
resource model.



2) a fixed priority-based scheduling policy ρ2, and
3) the compositional real-time scheduling policy ρ3.

The round robin scheduling policy ρ1, the basic policy of
the L4/Fiasco, schedules each VM in a fair manner. The
priority based scheduling policy ρ2 schedules each VM
with a distinct fixed-priority that is assigned according to
the utilization of its workloads. The compositional real-time
scheduling policy ρ3 is a HSF based on periodic component
interfaces: the system scheduler schedules the components
according to the periodic interfaces under the RM algorithm.

We perform experiments with a couple of scenarios as
follows,

Scenario 1
VM1 T1(1.0, 0.2) T2(1.2, 0.2) T3(1.5, 0.2)

VM2 T4(20, 2) T5(30, 2)

Scenario 2
VM1 T1(8, 1.5) T2(10, 2)

VM2 T3(2, 0.1) T4(3, 0.1)

Table I
SCENARIOS FOR EXPERIMENT

Table II shows the results of our experiments for scenario
1. For the scenario 1, ρ1 only generates deadline miss. Figure
6 illustrates a process generating deadline miss for scenario
1 under ρ1. Suppose that every task enters ready state at the
same time so that VM2 has enough tasks to execute at that
time. The processor is allocated to both of VMs in a fair
manner, but deadline miss can be generated.

Policy
VM1 VM2

Task 1 Task 2 Task 3 Task 4 Task 5

ρ1 0 3 25 0 0

ρ2 0 0 0 0 0

ρ3 0 0 0 0 0

Table II
DEADLINE MISS FOR SCENARIO 1 IN 200 PERIODS.

Table III shows the occurrence of the deadline miss for
the scenario 2. ρ2 only generates a deadline miss. For the
scheduling policy, VM2 cannot get CPU until VM1 is
idle since VM1 has a higher priority than VM2 due to
utilization of workloads4. When all tasks enter ready state
at the same time, the VM1 holds processor resource in 3.5s
and T3 and T4 generates deadline miss.

For compositional real-time scheduling, it schedules all
above scenarios as well as other diverse scenarios without
deadline miss. Consequently, the HSF with periodic interface
is suitable for the virtualization system in terms of real-time
scheduling.

4Utilization - VM1 : 0.39, VM2 : 0.28

Figure 6. Scheduling for VM1(3) and VM2(4) in L4/Fiasco.

Policy
VM1 VM2

Task 1 Task 2 Task 3 Task 4

ρ1 0 0 0 0

ρ2 0 0 14 5

ρ3 0 0 0 0

Table III
DEADLINE MISS FOR SCENARIO 2 IN 200 PERIODS.

B. Overhead

We have measured the overhead by using the RDTSC
instruction on an AMD architecture. The instruction returns
the number of clock cycles. The parts generating overhead
are the phase of “selecting a next thread in the ready
queue,” “setting the real-time timeout,” and “calculating the
composed interface.”

The overhead of “selecting a next thread in the ready
queue” exists since we have modified the L4/Fiasco source
code to disable other L4Linux threads during the execution
time of one L4Linux. The L4/Fiasco checks whether a next
thread in the ready queue belongs to the L4Linux when the
real-time timeout is set. If the thread does not belong to the
L4Linux, the L4/Fiasco chooses a next thread repeatedly. We
define the additional clock cycles to search for a proper next
thread in the ready queue linearly as the overhead. Table IV
indicates the measured clock cycles to choose a next thread
in the basic L4/Fiasco and the revised L4/Fiasco.

Type Worst Case Best Case Average Case

Basic 20952 69 219.33

Revised 20628 82 266.56

Table IV
OVERHEADS FOR SELECTING A NEXT THREAD



From this result, we can roughly think that the average
of the overhead is less than 50 clock cycles (about 25 µs)
on two VMs. This overhead depends on how many VMs
are running on the L4/Fiasco since only one thread of each
L4Linux server in the L4/Fiasco can be located in the ready
queue at the same time. This overhead occurs in every
context switching.

The overhead of “setting the real-time timeout” is needed
to support the dedicated scheduling during the VM’s exe-
cution time of each period. While this timeout is set, the
tasks of other L4Linux cannot be scheduled. The overhead
is showed in Table V.

Worst Case Best Case Average Case Unit

2110 131 475.75 (clocks)

1047 65 236 (µs)

Table V
OVERHEAD FOR SETTING TIMER

This overhead should be paid for every period of each
L4Linux. That means that when two VMs are running, we
have to pay about 500 µs to set the timer every 0.5s.

Finally, the overhead of “calculating the composed in-
terface” occurs when every real-time task is generated in
an L4Linux. This overhead includes IPC communication
between the L4loader and the L4Linux as well as calculating
interface of the L4Linux. This depends on the number of
real-time tasks of the same L4Linux. Figure 7 indicates the
overheads for the number of real-time tasks. Even though

Figure 7. Overhead for calculating bound execution time.

the overhead is quite large due to IPC communication, it is
reasonable in that it occurs when only a new real-time task
is generated.

The overheads are generated depending on the number
of VMs and real-time tasks linearly and the overhead is
relatively small.

V. CONCLUSION

This paper presents the design and implementation of
our hierarchical scheduling framework in the virtualization
environment. The L4/Fiasco and the L4Linux are chosen as
the hypervisor and the guest OS, respectively. The L4/Fiasco
kernel is revised to schedule its L4Linux server according
to its periodic interface.

We show a couple of scenarios whose timing require-
ments are not satisfied by some scheduling policies, but
supported by our HSF implementation. We demonstrate the
effectiveness of this approach with overhead measurement.
Our experimental results show that the HSF with a periodic
interface is acceptable in the virtualization environment.

In our implementation, each guest OS shares the same
period Π. However, the best Π of each guest OS cannot
be fixed since it will be changed according to the timing
requirements of its dynamically changing workloads and the
context switching overheads between the guest OSs. Finding
a suitable Π dynamically may generate additional overheads
that can affect real-time guarantees. This raises the problem
of how and how often to find a good Π. The research of this
problem remains as future work.

REFERENCES

[1] G. Heiser, “The role of virtualization in embedded systems,”
in Proceedings of the 1st Workshop on Isolation and Integra-
tion in Embedded Systems, April 2008.

[2] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proceedings of the 24th IEEE Real-
Time System Symposium, December 2003.

[3] I. Shin and I. Lee, “Compositional real-time scheduling
framework,” in Proceedings of the 25th IEEE Real-Time
System Symposium, December 2004.

[4] L. Almeida and P. Pedreiras, “Scheduling within tempo-
ral partitions: response-time analysis and server design,” in
Proceedings of the 4th ACM International Conference on
Embedded Software, September 2004.

[5] R. Davis and A. Burns, “Hierarchical fixed priority pre-
emptive scheduling,” in Proceedings of the 26th IEEE Real-
Time System Symposium, December 2005.

[6] Z. Deng and J. Liu, “Scheduling real-time applications in an
open environment,” in Proceedings of the 18th IEEE Real-
Time System Symposium, December 1997.

[7] X. Feng and A. Mok, “A model of hierarchical real-time
virtual resources,” in Proceedings of the 23rd IEEE Real-Time
System Symposium, December 2002.

[8] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open en-
vironment for real-time applications,” in Proceedings of the
20th IEEE Real-Time System Symposium, December 1999.

[9] G. Lipari and S. Baruah, “Efficient scheduling of real-time
multi-task applications in dynamic systems,” in Proceedings
of the 6th IEEE Real-Time Technology and Applications
Symposium, May 2000.



[10] G. Lipari and E. Bini, “Resource partitioning among real-
time applications,” in Proceedings of the 15th Euromicro
Conference on Real-Time Systems, July 2003.

[11] S. Matic and T. Henzinger, “Trading end-to-end latency for
composability,” in Proceedings of the 26th IEEE Real-Time
System Symposium, December 2005.

[12] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein, “Anal-
ysis of hierarchical fixed-priority scheduling,” in Proceedings
of the 14th Euromicro Conference on Real-Time Systems, June
2002.

[13] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. Bril,
“Towards hierarchical scheduling on top of vxworks,” in
Proceedings of the 4th International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications,
December 2008.

[14] M. M.H.P., van den Heuvel, R. J. Bril, J. J. Likkien, and
M. Behnam, “Extending a hsf-enabled open-source real-time
operating system with resource sharing,” in Proceedings of the
6th International Workshop on Operating System Platforms
for Embedded Real-Time Applications, July 2010.

[15] U. Steinberg, “Quality-assuring scheduling in the fiasco mi-
crokernel,” Master’s thesis, Dresden University of Technol-
ogy, March 2004.


