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I. INTRODUCTION

As real-time embedded systems are increasingly complex,
integration becomes a great challenge in their design and
development. Managing complexity of the system design is
therefore essential for high-assurance and cost-effective de-
velopment. Component-based design has consequently been
developed and gained its importance over the years as a
powerful technique for complexity management. In this design
paradigm, a large complex system is first decomposed into
smaller and simpler components – which are developed inde-
pendently – before recomposing them into a complete system
using interfaces that abstract away their internal complexities.

To facilitate component-based design, given a component,
one needs to be able to compute the component interface
- an appropriate abstraction of the component’s resource
requirement. This resource interface can be computed either
directly from the component’s workload or by composing the
interfaces of the subcomponents. Accurate and efficient inter-
face generation/composition techniques and tools are therefore
crucial for the component-based design of the system.

To meet the growing needs, we have developed CARTS
(Compositional Analysis of Real-Time Systems) as a platform-
independent tool that automatically generates resource in-
terfaces needed for the compositional analysis of real-time
systems. Our tool is built on top of several existing theoretical
compositional analysis frameworks for real-time systems [2],
[4], [6], [7]. Besides supporting standard schedulers, such as
Rate Monotonic (RM) and Earliest Deadline First (EDF), it
generates both periodic and explicit deadline periodic resource
interfaces. The tool also comes with a friendly GUI and a
rich set of tool features that allow designers to specify and
analyze a wide variety of systems at ease. At the same time,
it is also accompanied by a lightweight command-line option
that enables our tool to be integrated with other existing
toolchains.

II. THEORETICAL FOUNDATION UNDERLYING CARTS
In a hierarchical scheduling framework, the system is par-

titioned into a tree of components that are scheduled in a
hierarchical manner. Each internal node of the tree represents a
composite component, whose children are its sub-components.
Each leaf represents an elementary component, which is a
finite set of tasks in the system.

Figure 1 shows a composite component C made of two
elementary components C1 and C2, which are scheduled under
EDF. Component C1 consists of two tasks T1 and T2, which
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Fig. 1. Hierarchical scheduling of a system component.

are scheduled under EDF. Component C2 consists of two tasks
T3 and T4, which are scheduled under RM.

The compositional analysis of the example component C is a
two-step process: (1) compute the resource interface R1 (resp.
R2) of the component C1 (resp. C2) based on the resource de-
mands of the tasks in the component; (2) compute the resource
interface R by composing R1 and R2. The resource interface
R is then composed with the interface of other components to
form the interface of the upper-level component.

Task model (p,e) (p,e,o, j,d) (p,e,x)

Resource model
Periodic (Π,Θ) EDF, RM X RM

EDP (Π,Θ,∆) EDF, RM EDF, RM X

TABLE I
MODELS AND SCHEDULING POLICIES SUPPORTED BY CARTS.

The CARTS core engine runs several algorithms for
computing the interface of any component or a hierarchy of
components that are scheduled under RM or EDF. Table I
summarizes the task models and the scheduling policies for
the components, and their corresponding resource interface
models supported by CARTS. We briefly describe these
models below.

Task models. CARTS supports three different variants of
periodic task models, including: (i) strictly periodic task
with deadline equal to period [7], defined by T = (p,e);



(ii) periodic task with jitter and offset [3], defined by
T = (p,e,o, j,d); and (iii) strictly periodic tasks with resource
sharing [1], defined by T = (p,e,x). Here, p,e,o, j,d,x denote
the period, worst-case execution time, offset, jitter, relative
deadline, and the worst-case execution time of the task in a
critical session, respectively.

Resource interface models. A component interface produced
by CARTS engine can be given as either a periodic or an
explicit deadline periodic resource model. A periodic resource
model [7] is defined by Γ = (Π,Θ) where Π is the period and
Θ is the resource allocation time (0 < Θ ≤ Π). Semantically,
each periodic resource model Γ = (Π,Θ) provides Θ units of
resource in every Π time units. An explicit deadline periodic
(EDP) [2] resource model is characterized by Ω = (Π,Θ,∆)
where Π and Θ are defined as in the periodic resource model,
and ∆ is the explicit deadline (0 < Θ≤ ∆≤Π). Semantically,
EDP is similar to the periodic resource model, except that it
must provide Θ resource units within ∆ time units.

III. THE DESIGN OF CARTS

Figure 2 depicts the different components of the tool and
their interactions. At the back-end, the Scheduling Tree class
contains the reference to the root component of the system.
The Scheduling Algorithms package implements the CARTS
core engine. The XML Interpreter class contains methods for
parsing the XML input file and building Scheduling Tree
instances. Finally, the DBF/SBF Graph Generator class is
responsible for drawing the DBF and SBF of the components
and their interface models. The rest of the components con-
stitute the GUI front-end, which is detailed below.
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Fig. 2. CARTS system architecture.

Figure 3 shows an overview of the tool GUI. As shown in
the figure, CARTS provides two mechanisms for specifying
a system model: via the Component Tree Editor (the top left
window) or via the XML Editor (the top right window). The
component tree editor is equipped with various features that
enable designers to easily add, modify and remove compo-
nents/tasks in a system, using either the top menu or the
context menu. The XML editor allows an input XML file
description of the system following a simple CARTS XML
template. Further, one can also conveniently convert between
these two descriptions with a click of the convert button.

Depending on the input component task model, one can
apply the different algorithms for generating the component’s
interface (as outlined in Table I) via either the component’s
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Fig. 3. CARTS graphical user interface.

context menu or the top menu. The computed interface will
then be displayed in the Analysis Output window as an
interface tree, where each node gives the resource interface
of the corresponding component in the input component tree.
The output results can also be saved as an XML file in a similar
format as the input XML description, thereby allowing further
processing and/or interfacing with other tools. Additionally,
the tool also supports visualization of the demand bound
functions of the components and the supply bound functions
of the computed resource interfaces.

IV. CONCLUDING REMARKS

This paper demonstrates CARTS, a compositional analysis
tool for real-time systems. We presented an overview of the
underlying theoretical foundation and the architecture design
of the tool. CARTS is open source and available for free
download at http://rtg.cis.upenn.edu/carts/.

We plan to extend the current CARTS tool to support: (i)
more general task models (e.g., arrival functions [8], tasks with
dependency) and SBF-based resource models (e.g., service
functions [8]); (ii) other common scheduling policies (e.g.,
TDMA, Round Robin); and (iii) multi-mode systems [5].
Finally, we will investigate and incorporate into our toolset
compositional analysis techniques for real-time components
scheduled on multiprocessor platforms such as [6].
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