An overview of the Embedded Systems unit at Fondazione Bruno Kessler

Alessandro Cimatti

Fondazione Bruno Kessler

Center for Information Technology – IRST Head of Embedded Systems Unit

cimatti@fbk.eu

Overview

- Fondazione Bruno Kessler
 - Non-profit private research foundation in Trento
 - Formerly Istituto Trentino di Cultura/IRST
 - Two hubs: humanities and technologies
- Center for Information and Communication Technology
 - Director: Paolo Traverso
 - Research units, coordinated in research lines
 - RL: Adaptive, Reliable and Secure Systems

• The Embedded Systems Unit

- About 25 people
- 7 research staff, 7 postdocs, 8 programmers, 6 ph.d. students

Mixing Research and TT

- Strategy: tight integration of
 - Basic research
 - Tool development
 - Technology transfer
- Funding sources
 - H2020
 - European Railway Agency, European Space Agency
 - NASA NextGen
 - Industrial players
 - Aerospace
 - Railways
 - energy
 - oil and gas
- Since 2008, between 60% and 80% self funding

- Support Model-based design with formal methods
 - Find more bugs, earlier in design flow, certify correctness
 - Areas
 - Functional verification (traditional)
 - Dependability (FTA, FMEA) assessment
 - Requirements analysis
- Model based autonomous reasoning
 - Planning and scheduling
 - Execution monitoring
 - Fault detection, identification and recovery (FDIR)

Life Cycle of Complex Systems

- How do we support the design?
- Requirements validation:
 - Are the requirements flawed?
- Functional correctness
 - Does the system satisfy the requirements?
- Safety assessment
 - Is the system able to deal with faults?

From design to operation...

Iseas

- Planning
 - plan how to achieve desired "firing" sequence
 - retrieve pipes from holds, pre-weld, send to firing line, final weld
- Execution Monitoring
 - welding may fail, activities can take more time than expected
 - plant may fail
- Fault Detection, Fault Identification/Isolation
 - is there a problem? where is it?
- Fault Recovery
 - put off-line problematic equipment
- Replanning
 - identify alternative course of actions, e.g. reroute pipes

Complex systems operation

- Does system satisfy requirements?
- System as finite state model
- Requirements as temporal properties

Research Topics

- Satisfiability Modulo Theory
 - Boolean SAT + Constraint solving
- Abstraction to deal with infinite-state systems
 - Timed and hybrid systems
 - Software model checking
 - IC3 + implicit abstraction
- Contract-based design
 - correct-by-construction hierarchical decomposition
- Link to design languages
 - Simulink/SF, C, Altarica, AADL, SysML, BIP, Verilog, ...
- Formal safety analysis
 - From nominal to non-nominal behaviours
 - Automated Fault Tree construction
- Analysis of redundancy architectures
 - Automated reliability for TMR-based systems
- Diagnosability and FDIR specification and verification

Projects w/ European Space Agency

- Since 2007, a number of competitive projects awarded to FBK in cooperation with various industrial partners
- Topics:
 - Model-based safety analysis
 - Contract-based analysis
 - On-board model checking
- An AADL-based modeling language
- The OCRA, nuXmv, xSAP tool chain at the core
- Fault Tree generation, FDIR specification and V&V

- 2014: five-year collaboration agreement
 - Substantial amount of funding
 - Level of commitment
- Activities
 - Formal analysis of complex subsystems
 - Trasfer of verification tools
 - Training
 - Process improvement
- Examples of analyzed subsystems
 - Primary flight computer
 - Fly by wire signals from pilot and sensors to actuations
 - Triple-triple redundancy nine computers in parallel, mutually checking each other
 - Wheel brake system
 - Ground braking control

Case from AIR 6110 Wheel Brake System

- Aerospace Information Report
 - Informal description of development process
- Two-engine aircraft
 - 300-350 passengers
 - Up to 5hrs flights
- Focus on WBS
 - Two landing gear
 - 4-wheel per LG
 - Independent control

AIR 6110 WBS: main features

- Hydraulic braking
- Mixed computer-based/mechanical control
- Antiskid
- Redundancy in hydraulic plant and in computerbased control system

		Wheel Brake System		
		Normal Mode (Primary pressure source)	Alternate Mode (Secondary pressure source)	Emergency Mode (Finite-reserve accumulator)
Control system	Valid	 Brake_{Elec} Individual AntiSkid 	 Brake_{Mech} Paired- AntiSkid 	 Brake_{Mech} Paired- AntiSkid
	Invalid	N/A	Brake _{Mech}	Brake _{Mech}

ENDAZIONE

- S18-WBS-R-0321: Loss of all wheel braking (unannunciated or annunciated) during landing or RTO shall be extremely remote
- S18-WBS-R-0322: Asymmetrical loss of wheel braking coupled with loss of rudder or nose wheel steering during landing or RTO shall be extremely remote
- S18-WBS-0323: Inadvertent wheel braking with all wheels locked during takeoff roll before V1 shall be extremely remote
- **S18-WBS-R-0324**: Inadvertent wheel braking of all wheels during takeoff roll after V1 shall be extremely improbable
- S18-WBS-R-0325: Undetected inadvertent wheel braking on one wheel w/o locking during takeoff shall be extremely improbable

AIR 6110 WBS: general schema

AIR 6110 WBS: main

AIR 6110 WBS: backup

AIR 6110 WBS: emergency

AIR 6110 WBS: nominal

AIR 6110 WBS: extended

AIR6110 WBS: architecture variants

 Various architectures automatically analyzed

BRUNO KESSLER

- All minimal cut sets (fault combinations) leading loss of function
- Generated Fault tree
- Generated FMEA tables
- Found some uncovered cases

Thanks for your attention

Next year in Trento in September... SEFM IMBSA Safecomp

PhD at FBK

The FBK-ICT PhD program involves more than 60 PhD <u>Students</u> allocated to the units of the three <u>Research Lines</u> and of the three <u>High Impact</u> <u>Initiatives</u> of the center. The PhD program is carried out in collaboration with prestigious national and international <u>Affiliated universities</u>.

- FBK-ICT has a special partnership with:
 - Department of Information Engineering and Computer Science, University of Trento
- FBK-ICT has a joint PhD school ("accreditamento congiunto") with:
 - University of Bologna ("scuola di dottorato UNIBO-DEI/FBK")
 - University of Genova (with UNIGE-DIBRIS, under approval)
 - University of Padova (with UNIPD-BMCS, under approval)
- FBK-ICT has joint PhD agreements with:
 - Queen Mary University, London, UK
 - University College London, UK
 - Imperial College London, UK
 - Massachusetts Institute of Technology, USA
 - DFKI, Germany
 - University of Haifa, Israel
- FBK-ICT has agreements for co-supervised PhD students with University of Siena, Perugia, Pavia, Brescia.

Ingredients for the formal view

- A formal language to specify contracts
 - Temporal logics
- A framework for correct contract refinement
 - Proof obligations
 - Logical consequence of temporal logic formulae
- A formal language to specify implementation
 - Finite state machines
- Checking implementation
 - Model checking

