IWES 2016

1st Italian Workshop on Embedded Systems

Pisa -- 19 September 2016

Research Group Overview

Roberto Giorgi University of Siena, Italy

http://www.dii.unisi.it/~giorgi

Engineering Faculty in Siena

Computer Architecture Lab

Research Group @ UNISI

- 1 Associate prof.: Roberto Giorgi
 - 1 Postdoc, 1 PhD Student, 1 Kernel Hacker
 - HR Throughput: 2 Full-Prof., 2 Researchers, 9 Postdocs, 6 PhD students ---- during the last 7 years
- Courses by me:
 - Bachelor (L1): **Computer Architecture** (6 credits) -3rd year (Italian)
 - Master (L2): **High Performance Computer Architecture** (9 credits) 1st and 2nd year(English)
- Lab Resources
 - 64-core (x86) CC-NUMA w/1024GiB RAM
 - 48-core+256GiB, about 15 simulation servers (8-core+32GiB)
 - 12 different FPGA boards ranging from Virtex-6 to Zynq Ultrascale+ (6-core 64 bits)
 - Xeon Phi, Maxeler Dataflow computer, GPUs, 50+ embedded boards, (20+ workstations)

Agile, eXtensible, fast I/O Module for the cyber-physical era

2015-2017 -- 4Meuro funding

Brief introduction to the AXIOM project

Roberto Giorgi University of Siena, Italy

FUTURE AND EMERGING TECHNOLOGIES 6.13 Meuro funding 2010-13

Università di Siena (Coordinator)

Barcelona Supercomputing Center

Exploiting Dataflow Parallelism in Teradevice Computing

http://teraflux.eu

Contact: Prof. Roberto Giorgi (project coordinator): http://www.dii.unisi.it/~giorgi

University of Manchester

University of Cyprus

University of Delaware (USA)

ERA Embedded Reconfigurable Architectures

Project number: 249059

FP7 - 2010-2013 - \sim 3 Meuro funding

Xilinx Virtex6

Cooperation with SantaChiaraLab (100m from us), Dept. Cognitive Science (in-building) & SECO (Arezzo)

SECO/UNISI achievements:

2014: UDOO-ARM (99 \$ PC+Arduino) → 600k\$ on Kickstarter

 2016: UDOO-x86 (PC+Arduino, 10x faster than Raspberry-3) → 800k\$ on Kickstarter

ACM International Conference on Computing Frontiers'17

15-17 May 2017 – Siena, Italy www.computingfrontiers.org

sigmicro

Siena, the city

Siena sorroundings

TERAFLUX

(Nearer) Future Scenarios

== 3D stacking, 8nm, 3D transistors, Graphene

Fab D1X (OR), 42 (AZ), 24 (Ireland) starting the 14nm node in 2013

Pawloski, May 2011, Exascale Seminar, Ghent

DATAFLOW

A Scheme of Computation in which an activity is initiated by presence of the data it needs to perform its function

(Jack Dennis)

TERA^FLUX.EU **Working Hypothesis**

- 1000 Billion- or 1 TERAdevice computing platforms pose new challenges:
 - (at least) programmability, complexity of design, reliability
- **TERAFLUX** context:
 - High performance computing and applications (not necessarily embedded)

TERAFLUX scope:

Exploiting a less exploited path (DATAFLOW) at each level of abstraction

UD's Involvement in Exascale Computing

Traleika Glacier: System Architecture – X-STACK project

DF-Threads (DataFlow Threads)

- We built a demonstrator based on HP-Labs COTSon simulator for Dataflow Based execution
- Running 220 instances of 32-core Linux (full-system)
 virtual machines 7000+ cores
- We seamleasly run millions of DF-threads (x86 binaries compiled with GCC) with almost linear speed-up on a 1024-core (x86) without need of global cache coherence
- General computation are supported Transactional Memory is joined to Dataflow to support undeterministic computations with shared state

R. Giorgi, P. Faraboschi, "An Introduction to DF-Threads and their Execution Model", *IEEE MPP*, Paris, France, Oct. 2014, pp. 60-65.

ERA

ERA Target System

- Smartphone with FPGA-based SoCs (e.g Zynq)
- Exploring the energy efficiency of reconfigurable hardware

Benchmarks analysis from energy+delay viewpoint

- DYNAMYC ENERGY consumption and DELAY while varying L2 cache-size, issue-width, frequency
- Delay significantly decreases with L2 cache size, frequency, issue-width (total energy as in previous slide)
- These behaviors have been confirmed across all the EBS applications

Roberto Giorgi – giorgi@unisi.it

AXIOM

AXIOM main goal

- Building a ready-to-market Single Board Computer (SBC) able to address high performance computations in scenarios like
 - Smart Video-surveillance
 - Smart Living & Smart Home

CAN WE DO THAT?

- SECO/UNISI achievements:
 - 2014: UDOO-ARM (99 \$ PC+Arduino) → 600k\$ on Kickstarter
 - 2016: UDOO-x86 (PC+Arduino, 10x faster than Raspberry-3) → 800k\$ on Kickstarter

UDOO X86 FOR CLUSTER

FIRST PROTOTYPE UNDER REVIEW

- Stackup definition
 - 10 layers PCB
 - HS/LS/power planes arrangement
- Placement
 - Achieve mechanical and electrical constraints
- Routing (WIP)
 - Design for power/signal integrity
- 3D model available

