
Co-simulation of embedded systems:
a PVS-Simulink integrated environment

Cinzia Bernardeschi1 Andrea Domenici1

Paolo Masci2

1Department of Information Engineering, University of Pisa
2INESC-TEC and Universidade do Minho, Portugal

Italian Workshop on Embedded Systems, 19-20 September 2016, Pisa

- p. 2/25

Embedded systems

■ Embedded systems consist of a discrete-time component
embedded in a continuous-time plant, and in most cases have
safety requirements.

■ Modelling and simulation formalisms for discrete systems and
those for continuous systems are distinct

◆ discrete systems: evolve through a set of states (e.g.,
Statecharts, Timed Automata)

◆ continuous systems: described by a set of variables whose
value changes continuously according to a set of laws, usually
defined by differential equations (e.g., Matlab, ScicosLab)

■ The two subsystems should be modeled in the appropriate
formalism, also because digital control experts may not be familiar
with plant modelling, and conversely

Besides being validated by simulation and testing, such systems
should be formally verified

- p. 3/25

Contribution

A framework, with supporting tools, where a logical model of a
discrete system is interfaced to a block-based model of a continuous
one

■ discrete part formally specified with Timed Automata, translated
into a set of logic theories

■ continuous part described in Simulink

- p. 4/25

Main features of the framework

■ A network of Timed Automata is created with a graphical editor;

■ the network is automatically translated into logic theories
according to patterns we have developed;

■ the resulting logic specification is amenable both to verification and
simulation with the PVS theorem prover and its PVSio extension;

■ the logical specification can be co-simulated with a block- based
model;

■ two interface subsystems connect the respective models to a
WebSocket communication framework. Their purpose is to catch
simulation events generated by the two models, and forward them
from one simulation environment to the other

- p. 5/25

Example: heart-pacemaker co-simulation

Discrete

ICP model
Communication

heart model

Hybrid

Integrated model

Architecture of the heart model (Chen et al., 2014)

(Chen et al., 2014) T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre,

Quantitative verification of implantable cardiac pacemakers over hybrid heart

models, Information and Computation, vol. 236, n. 0, 2014.

- p. 6/25

The pacemaker model

A TA network modeling the behavior of a pacemaker (Jiang et al.,
2012)

AP? t:=0

AVI

Idle

WtURI {clk =< TURI}

[clk >= TURI] VP!

[t >= TAVI & clk >= TURI] VP!

{t =< TAVI}

[t >= TAVI & clk < TURI]

VS?

AVI

AS? t:=0

VS?
C

Idle

Vbeat?

VP? t:=0

[t >= TVRP]

inter

VS! t:=0{t =< TVRP}

VRP

VRP

VS? clk := 0

URI

VP? clk := 0

URI

{t =< TLRI − TAVI}
LRI

AS? VP? t:=0

VP? t:=0

VS? t:=0

ASed

LRI

VS? t:=0

[t >= TLRI−TAVI] AP! t:= 0 CC

VS? t:=0

PVARP PVAB

[t >= TPVAB]

AS!

inter

Idle

PVARP

[t >= TPVARP]
VP? t:=0

inter1

{t =< TPVAB}

Abeat?

{t =< TPVARP}
Abeat?

(Jiang et al., 2012) Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R.

Mangharam, Modeling and verification of a dual chamber implantable

pacemaker, in Tools and Algorithms for the Construction and Analysis of

Systems, LNCS vol. 7214, 2012.

- p. 7/25

Timed Automata

This TA (LRI) models the part of the ICP correcting bradycardia by
keeping the heart rate above a minimum level.

AS: atrial sense AP: atrial pulse

VS: ventricular sense VP: ventricular pulse

LRI
t <= TLRI − TAVI

AS VP / t:=0

VS / t:=0

Ased

VP / t:=0

VS / t:=0

CLOCK ASSIGNMENTS
ACTIONS

MODE

[t >= TLRI−TAVI] AP / t:= 0

GUARD MODE INVARIANT

TLRI: lower rate interval TAVI: atrio-ventricular interval

- p. 8/25

MathWorks Models

Simulink is a widely used tool to model

complex systems.

Heart models have been developed in Simulink with the hybrid
automaton paradigm.

E.g., a small part of a heart model, the SA stimulation automaton
(Chen et al., 2014):

- p. 9/25

Logic Specifications

Logic specifications model a system by stating its properties in a
formal language.

Logic specifications are used for the formal verification of systems,
using automatic theorem proving.

(THEOREMS)

System properties

(THEORY)

System definition
Theorem prover

PROVED!

NOT
PROVED

- p. 10/25

The PVS Theorem Proving Environment

The Prototype Verification System is an interactive theorem
prover developed at SRI International by S. Owre, N. Shankar,
J. Rushby, and others.

PVS has a rich specification language to define theories.

PVS has many powerful inference rules to prove theorems
interactively.

■ A user submits a theorem, then chooses inference rules until the
proof ends successfully, or gets stuck.

■ Often a single step is sufficient.

PVS has a simulation extension (PVSio). PVSio generates for
each function in the declarative PVS language a procedure to
compute its value (Lisp). PVSio can also compute functions with side
effects, such as producing outputs.

- p. 11/25

From Timed automata to PVS

Modelling patterns have been defined to represent TAs in PVS
executable specifications.

LRI
t <= TLRI − TAVI

AS VP / t:=0

VS / t:=0

[t >= TLRI−TAVI] AP / t:= 0

Ased

VP / t:=0

VS / t:=0

LRI: THEORY BEGIN

Mode: TYPE = {LRI, ASed}

state: TYPE = [#

time: real,

loc: Mode #]

init_LRI: state = (# time := 0, loc := LRI #)

en_APout(st: state): boolean = % enabling

loc(st) = LRI AND time(st) >= TLRI-TAVI

APout(st: (en_APout)): state = (# time := 0, loc := LRI #)

...............

en_tau(st: state): bool = false % time-checking predicate

tau(st: state): state = st % timing function

END LRI

- p. 12/25

Integration: Architecture

PVSio ICP-web

ICP model
web sockets

heart modelheart-web

web socket interface

MathWorks simulation

PVS environment

The ICP and heart model communicate through the WebSocket
protocol.

The two models can be executed on the same computer, or be
distributed on different machines.

- p. 13/25

Co-simulation

The PVSio-web co-simulation environment integrates the two
models:

■ The Heart model simulation is started in the Simulink environment

■ the PVSio environment is loaded with the PVS theory describing
the Pacemaker

■ PVSio-web requests the heart model to return heartbeat signals

■ PVSio-web sends PVSio a function call with heartbeat signals as
arguments

■ PVSio computes the pacemaker model response and returns it to
PVSio-web

■ PVSio-web sends the pacemaker response to the heart model

- p. 14/25

Models’ synchronization

Synchronization between the two models is achieved by letting the
heart model control the simulated time.

■ The sampling time interval of the heart model is taken as the time
unit.

■ At each sampling time, a Simulink interface block (an S-function) is
executed, it waits on the websocket for the PVSio-web request for
the heartbeat signals, provides the signals and waits for the
response, then it returns control to Simulink with the AP and VP
signals.

■ On the pacemaker side, time is updated by one unit.

So the two models execute in lockstep with a blocking
communications paradigm.

- p. 15/25

Models’ synchronization

Simulink diagram of the extended heart model

- p. 16/25

The Co-simulation framework

- p. 17/25

Simulation output for bradycardia

- p. 18/25

Formal Verification

Formal verification is an important complement to simulation.

E.g., suppose we want to verify that the previously shown ICP
system satisfies this property:

It is always the case that module LRI is in state LRI and its clock is
reset when transition AP is executed.

lri_ap: LEMMA

FORALL (s0, s1: State):

per_APout(lri(s0)) AND s1 = APout(s0) IMPLIES

mode(lri(s1)) = LRI AND time(lri(s1)) = 0

A single application of the grind rule (multiple simplifications) is
sufficient.

Rule? (grind)

...

Q.E.D.

Run time = 0.17 secs.

- p. 19/25

Formal Verification

More interesting properties require complex proofs.

THEOREM: All actions are mutually exclusive.

The following Lemma states that the internal actions of PVARP are
not enabled when AP is enabled.

ap_en_pvarptau: LEMMA

forall (st: State):

en_APevent(st)

IMPLIES

NOT en_PVARPtau(t)

Axioms that represents invariants of locations or expressing the
semantics of TA committed locations are defined.

- p. 20/25

Proof tree: LEMMA ap_en_pvarptau

(skosimp∗)

(expand“en PVARPtau”)

(expand“en tau”)

(split)

(flatten)

(lemma“invar pvab”)

(inst −1“st!1”)

(split)

(assert)

(flatten)

(lemma“invar pvarp”)

(inst −1“st!1”)

(split)

(assert)

- p. 21/25

Conclusions

A method and its supporting tools have been developed to integrate
discrete-time and continuous-time models built on different modeling
paradigms.

This enables developers of discrete-time systems to model each
component with the most appropriate tools and languages.

The resulting simulation environment can be executed on a laptop or
on a distributed system. This affords more computing power when
needed, and the convenience of switching easily between different
models.

Using the PVS environment for the discrete-time model makes it
possible to couple simulation to formal verification.

The method has been used to integrate ICP and heart models
described in the literature, developed independently.

- p. 22/25

Additional work

PVS is currently used to specify, simulate and verify the software
embedded in medical devices (e.g, infusion pumps) and
requirements of integrated clinical environments.

PVS includes theories on mathematical analysis that can be used to
model continuous systems. For example, we have used it to find safe
range of operations for a simple non-linear control of a water tank
(simple ordinary differential equation).

C. Bernardeschi, A. Domenici, P. Masci: Modeling communication
network requirements for an integrated clinical environment in the
Prototype Verification System. ISCC 2016: 135-140 2015 C.

Bernardeschi, A. Domenici:Verifying safety properties of a nonlinear
control by interactive theorem proving with the Prototype Verification
System. Inf. Process. Lett. 116(6): 409-415 (2016)

- p. 23/25

Sequent calculus

The sequent calculus works on formulae of a special form, called
sequents, such as:

A1, A2, . . . , An ⊢ B1, B2, . . . , Bm

where the Ai’s are the antecedents and the Bi’s are the
consequents.

Each antecedent or consequent, in turn, is a formula of any form (it
may contain subformulae with quantifiers and connectives, but not
“sub-sequents”).

The symbol in the middle (⊢) is called a turnstile and may be read as
“yields”.

Informally, a sequent can be seen as another notation for

A1 ∧A2 ∧ . . . ∧An ⇒ B1 ∨B2 ∨ . . . ∨Bm

- p. 24/25

Sequent calculus

A sequent is true if:

■ Any formula occurs both as an antecedent and as a consequent; or

■ any antecedent is false; or

■ any consequent is true.

In the PVS prover interface, a sequent is represented as:

{-1} A1

...

{-n} An

|-------

{1} B1

...

{m} Bm

- p. 25/25

Sequent calculus

The Sequent calculus has one axiom: Γ, A ⊢ A,∆ where Γ and ∆

are (multi)sets of formulae.

Inference rules:

Γ,A⊢A,∆axm
Γ⊢∆,A A,Γ⊢∆

Γ⊢∆ cut
A,A,Γ⊢∆
A,Γ⊢∆ ctr L

Γ⊢∆,A,A
Γ⊢∆,A

ctr R

Γ⊢∆,A
¬A,Γ⊢∆¬L

A,Γ⊢∆
Γ⊢∆,¬A

¬R
A,B,Γ⊢∆
A∧B,Γ⊢∆∧L

Γ⊢∆,A Γ⊢∆,B
Γ⊢∆,A∧B

∧R

A,Γ⊢∆ B,Γ⊢∆
A∨B,Γ⊢∆ ∨L

Γ⊢∆,A,B
Γ⊢∆,A∨B

∨R
Γ⊢∆,A B,Γ⊢∆
A⇒B,Γ⊢∆ ⇒L

A,Γ⊢∆,B
Γ⊢A⇒B,∆⇒R

A[x←t],Γ⊢∆
∀x.A,Γ⊢∆ ∀L

Γ⊢∆,A[x←y]
Γ⊢∀x.A,∆ ∀R

A[x←y],Γ⊢∆
∃x.A,Γ⊢∆ ∃L

Γ⊢∆,A[x←t]
Γ⊢∃x.A,∆ ∃R

axm: the axiom
cut : the cut rule
ctr : the contraction rules

The quantifier rules have caveats on the quantified variable.

	Embedded systems
	Contribution
	Main features of the framework
	Example: heart-pacemaker co-simulation
	The pacemaker model
	Timed Automata
	MathWorks Models
	Logic Specifications
	The PVS Theorem Proving Environment
	From Timed automata to PVS
	Integration: Architecture
	Co-simulation
	Models' synchronization
	Models' synchronization
	The Co-simulation framework
	Simulation output for bradycardia
	Formal Verification
	Formal Verification
	Proof tree: LEMMA ap_en_pvarptau
	Conclusions
	Additional work
	Sequent calculus
	Sequent calculus
	Sequent calculus

