HERCULES

High-Performance Real-time Architectures for Low-Power Embedded Systems

INTRODUCING HERCULES

MARKO BERTOGNA
UNIVERSITY OF MODENA, ITALY

Overview

Partners

1 (Coordinator)	University of Modena	UNIMORE	Italy
2	Czech Technical University in Prague	CTU	Czech Republic
3	ETH Zurich	ETHZ	Switzerland
4	Evidence Srl	EVI	Italy
5	Pitom snc	PIT	Italy
6	Airbus Gmbh	AB	Germany
7	Magneti Marelli	MM	Italy

Timespan

- o January 2016 December 2018
- Budget: ~3.3 M
 - o 2.1M EU, 700k Switzerland, 500k industrial co-funding

Technological trend

Observations

- You will be using multi/many-core systems
- Performance will keep growing only for properly designed parallel applications
- Mastering parallelism is not so easy
- Achieving a predictable behavior is harder
 - o Parallel concurrency: inter-core dependencies
 - o Multiple contention sources: bus, caches, memory, I/O, etc.
- Existing solutions either sacrifice performance (overprovisioning) or predictability

Applications Trend

- New applications requiring a prompt interaction with the environment
- Replace human activities
 - Driving, flying, sailing, farming, tracking, manufacturing, building, checking, testing, etc.
- Higher workload
 - o E.g., from multiple cameras and sensing devices
 - Require parallel computing platforms/accelerators
- Real-time guarantees
 - What if a self-driving car "misses" a deadline?
- Higher criticality/safety requirements

HERCULES target

- Real-Time Embedded Super-Computing Platforms
- Integrated framework to achieve predictable performance on top of cutting-edge heterogeneous COTS multi-core platforms
- Technological baseline
 - Real-time scheduling techniques and execution models recently proposed in the research community
 - High-performance/Low-power embedded COTS platforms
 - Next generation real-time applications

Main Goals

Goal G1

Demonstrate and implement the first industrial-grade
 framework to provide real-time guarantees on top of cutting-edge heterogeneous COTS platforms for the embedded domain

Goal G2

o Obtain an **order-of-magnitude improvement** in the **energy efficiency** and **cost** of **next generation real-time systems**

Goal G3

 Provide a homogeneous programming interface to simplify the development of future real-time application on top of heterogeneous COTS platforms

Use Case 1: Autonomous Driving

- Domain controller
 - Multi-sensory data fusion
 - Situation awareness
 - Trajectory planning

Use Case 2: Avionics

Machine vision

Online computer learning for object detection and tracking

HERCULES at a glance

- Cost
- Power
- Size

- +Isolation
- +Predictability
- +Programmability
- +Safety
- +Openness

Who Does What

Ecosystem Building

- Industrial partners customer base and supply chain
 - o Magneti Marelli, Airbus, Evidence, Pitom
- Academic dissemination
 - UNIMORE, ETH, CTU + Real-Time research community
- Software development
 - Open source community, ERIKA, Linux, Jailhouse, etc.
- Industrial Advisory Board
 - o Automotive: BMW, Porsche, Continental, Autoliv, Codeplay, ...
 - o Avionics: Finmeccanica, Selex ES, Honeywell, MBDA, ...
 - o Farming, Construction: Topcon, Yanmar, ...
 - o Industrial Automation: SACMI, IMA, Tetra Pak, Datalogic, ...
 - o Multi/many-core IP: Nvidia, ARM, ...
 - General audience: Tom's Hardware

Hardware Platform

- Multi-core host + accelerator(s)
 - o ARM big.LITTLE or similar power-efficient multi-core host
 - o GPU, DSP cluster, many-core fabric or FPGA acceleration
- Two representative platforms selected @ month 6
 - One for each use-case domain (automotive and avionics)
 - Decision based on predictability, programmability, performance/cost, power efficiency
 - Cutting edge technologies
 - Nvidia Tegra X1/Parker architecture (20/16nm), Xilinx Zynq Ultrascale (16nm), Renesas R-Car H3 (16nm), Samsung Exynos 7 Octa (14nm), Qualcomm Snapdragon 820 (16nm), Intel 5th gen Core (14nm), Kalray MPPA (28 nm), TI KeystoneII (28nm)

Software Platform

- Predictable Hypervisor
- Lightweight RTOS
 - ERIKA Kernel on LITTLE cores
- Linux with real-time patch
 - o sched deadline
- Lightweight OpenMP runtime
- Predictable host-to-accelerator offloading routines
- Predictable execution models
- Compiler support

Conclusions

- HERCULES will provide a software framework to simplify the development of next-generation real-time applications on heterogeneous COTS platforms
 - TRL 5-6: *validation in representative environments*
- Multiple targets:
 - Performance with real-time guarantees
 - Low power/Low cost
- Mostly open-source
 - Linux, ERIKA, OpenMP
 - May protect some IP for market opportunities

Thank you!

marko.bertogna@unimore.it

