
Software-Defined Network Controllers for Industrial
and Automotive Applications

Gianluca Cena, Ivan Cibrario Bertolotti, and Adriano Valenzano
{gianluca.cena, ivan.cibrario, adriano.valenzano}@ieiit.cnr.it

CNR – National Research Council of Italy, IEIIT, Torino (Italy)

IWES 2016
1st Italian Workshop on Embedded Systems

19–20 September 2016, Pisa, Italy

Ivan Cibrario Bertolotti (CNR-IEIIT) SDCC IWES 2016 — (svn rev. 148) 1 / 15



Outline

Introduction and Motivation

Design Issues

Case Study: A Software-Defined CAN Controller

Conclusion and Future Work

Ivan Cibrario Bertolotti (CNR-IEIIT) SDCC IWES 2016 — (svn rev. 148) 2 / 15



Introduction and Motivation

Motivation

Experimental work on the data-link protocol layer has customarily
been confined to the hardware domain
FPGA-based implementations are feasible in most cases, but
require specialized programming tools. . . and an on-board FPGA.
A completely software-defined network controller would be more
flexible and easier to use, without the disadvantages of a simulator

Develop an exemplar controller and assess its performance
Similar to a Software-Defined Radio (SDR)
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Design Issues
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Design Issues
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Design Issues

Memory Management

Mark read-only and read-write data (as well as code) and keep
them separate from each other
This enables data structures and code to be placed in different
memory regions
It makes the optimizer’s work easier (and better)
Any GCC __attribute can easily be disabled if unsupported

The memory management strategy does not affect portability
(even to non-GCC compilers)
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Design Issues

Source-Level Code Optimization

Understand how compilers (especially optimizers) work
and “help” them. . .
. . . staying within the boundary of the language standard
Often, updates to the code are minimal and improve performance
significantly, even on dissimilar architectures
Effective alternative to using the assembly language for critical
real-time modules

Good experience in the past with embedded CAN payload codecs for
stuff bit prevention (ZSC)
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Case Study: A Software-Defined CAN Controller

A Software-Defined CAN Controller (SDCC)
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Case Study: A Software-Defined CAN Controller

Advantages of Portability

The same code runs on diverse platforms, for instance:
NXP LPC1768 (low-end µC for automotive/embedded
applications, ARM Cortex-M3 @ 100 MHz, bare metal)
Intel T9400 (mobile processor for laptop computers,
Penryn @ 2.53 GHz, dual core, OS X)

The only difference lies in the interface with the CAN transceiver
and clock generator:

Real hardware on the LPC1768
Simulated hardware on the T9400

Portability speeds up software development and improves its
quality
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Case Study: A Software-Defined CAN Controller

Simulation and Observability

When SDCC is compiled in simulation mode
It works in simulated time (much faster than real time)
Its inputs can be driven at will by means of stimuli files

Useful to explore borderline scenarios that may be hard to reach
on a real bus
Its outputs and (more interesting) internal state are completely
observable and can be conveniently visualized (gnuplot)

Simulation results are completely faithful because, barring compiler
bugs, the SDCC code is the same code that runs on the real hardware
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Case Study: A Software-Defined CAN Controller

Example: Bit (Re)synchronization in SDCC
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Case Study: A Software-Defined CAN Controller
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Case Study: A Software-Defined CAN Controller

Memory Footprint and Performance

Code Size [B]
Module LPC1768 T9400
Medium Access Control (MAC) 5096 10183
Physical Coding Sub-Layer (PCS) 1305 2863
Physical Medium Attachment (PMA) 835 940
Total 7236 13986

Data/Bss segments are empty in both cases (not a surprise,
considering the software design)
On the LPC1768, SDCC is able to process one quantum every
about 128 clock cycles
Fast enough to drive a real CAN bus at 62.5 kb/s
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Case Study: A Software-Defined CAN Controller

CAN XR

SDCC has been used to implement CAN XR, an extension of the CAN
(FD) protocol that supports in-frame replies

Simulation mode was used for debugging the protocol during
development
The SDCC-based CAN XR controller was then connected to a real
CAN bus (together with standard hardware controllers) to confirm
its backward compatibility
A proof-of-concept CAN XR implementation requires about 150
additional lines of code (in the MAC layer)
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Conclusion and Future Work

Conclusion and Future Work

Software-defined controllers are a valid alternative to hardware and
FPGA-based designs due to improved convenience and portability

Explore further extensions to the CAN standard
Use software-defined controllers as low-cost bus analyzers. . .
. . . and (possibly unwelcome) bus sniffers
Assess whether a C++ implementation is workable (performance
issues)
Improve CAN security at (or by means of) the data-link level
(Howard University, USA)
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Conclusion and Future Work
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