1st Italian Workshop on Embedded Systems

IWES 2016

September 19-20, 2016 — Pisa, Italy

Reliable Wireless Communications for Industrial Networked Systems

G. Cena et Al.

CNR-IEIIT (Torino)

Wireless in industrial scenarios

- Wireless communication is typically deemed not reliable enough for the use in real-time control systems
 - Interference from nearby wireless nodes and networks, especially those based on CSMA/CA mechanisms and the like
 - Disturbance from industrial equipment generating electromagnetic noise, including (multipath) fading effects
- But it seem many people are interested in it...
 - A lot of papers have appeared in the past decade in the scientific literature that propose techniques aimed at improving reliability
 - Vendors as well are offering commercial wireless solutions specifically tailored for industry (e.g., WirelessHART)
 - Applications of wireless networks (like cable replacement) are often advantageous and sometimes necessary

Reliable wireless communications

- When dealing with wireless networked control systems, the term "reliability" has to be somehow redefined
 - Radio communication suffers from unpredictable transmission latencies and higher packet losses
 - Hardly they can be used in hard real-time contexts
 - Unsuitable when determinism is a strict requirement
- Developing a brand new wireless transmission technology explicitly for the industry is likely not the best option
 - Too expensive (no synergies with the ICT world)
 - Coexistence may be a problem (spectrum is already crammed)
 - Most vendors prefer to rely on existing, well settled, proven solutions:
 IEEE 802.15 and IEEE 802.11

Available wireless technologies

- COTS wireless solutions for industry (e.g., WirelessHART) rely on specific mechanisms for enhancing reliability
 - IEEE 802.15 with channel hopping and blacklisting
 - but they are not particularly fast (250 Kb/s)
 - and are not directly interoperable with Ethernet at the data-link layer
- Our work mostly focused on Wi-Fi
 - Much faster (bit rates in excess of 600 Mb/s)
 - Extremely popular in home and office automation
 - Integration is possible with PCs, mobiles, and existing WLANs
- ... but most of our approaches and results can be actually applied to any wireless transmission technology

Reliable communication

- In theory, networks used to interconnect devices in control systems must always deliver all packets timely
 - Unless some serious fault happens (remedy: fault-tolerance)
 - Wired solutions: CAN, Real-Time Ethernet, FlexRay, etc.
- What does reliable mean when applied to wireless networks?
 - The likelihood to completely lose a packet should be as low as possible
 - The likelihood to miss a packet deadline should be as low as possible
 - but the ether is open, erratic and much more prone to errors than wires
- No way: wireless networks are unsuitable for hard real-time
 - but, if countermeasures are taken, they offer interesting performance
 - Soft real-time systems (even demanding ones) are not out of reach

How to improve reliability?

Seamless redundancy

- Suitably counteracts temporary phenomena, like disturbance and interference from external networks and wireless stations
- Offers (on average) tangible improvements
- Tuning protocol parameters
 - EDCA QoS can be exploited to differentiate traffic (RT vs. BE)
 - Operating parameters like interframe spaces and contention windows can be purposely employed to improve medium access
- Centralized access schemes
 - Prevent internal interference and delays typical of distributed access schemes when all wireless stations agree to obey the same access rules (S/W protocol overlay located above adapters)
 - Very interesting performance when coupled with other mechanisms

Seamless channel redundancy

- In its simplest embodiment, Parallel Redundancy Protocol (PRP) applied to conventional Wi-Fi equipment
 - Two *distinct* channels are required for each link (e.g., STA \leftrightarrow AP)
 - Frames copies are sent on both channels at the same time
 - Receivers retain the first copy and discard the latter
 - Packet *losses* decrease noticeably and transmission *latencies* become shorter and more predictable

The next step

- Link-level seamless Wi-Fi Redundancy (Wi-Red)
 - Applies separately to the each link (unlike PRP, which is end-to-end)
 - Permits to exploit DL information (coming from ACK frames)
 - Reduces the wasted bandwidth and achieves higher performance
- Duplicate avoidance mechanisms
 - Reactive Duplicate Avoidance (RDA): Whenever an ACK is received on one channel, all pending transmissions of the same frame are canceled (in the transmission queue and possibly in the MAC)
 - Proactive Duplicate Avoidance (PDA): Save network bandwidth by temporarily deferring the transmission of the second copy of a frame (many solutions based on different heuristics)
- Performance analysis highlights substantial benefits

Wi-Red conceptual architecture

Experimental assessment

- Simulation shows that seamless redundancy is very effective in improving communication quality (and system reliability)
 - provided that behavior of channels is statistically independent
- Is this assumption true in the real world?
 - An experimental campaign was carried out on a prototype setup
 - A testbed was implemented on a PC running Linux with two Wi-Fi adapters, associated to two APs operating on two distinct channels
 - APs are connected to the PC through a switch
 - A measurement task sends a large number of packets (millions) using PRP rules and collects results about data delivery
 - Both lab and industrial environments were investigated
 - Independence of channels is typically verified quite well

Testbed

- Simple but extremely *effective* in order to determine transmission latencies and packet loss ratio
 - The PC acts as both source and destination of packets
 - Same clock source to measure timings

Guidelines

- In view of a *prototype implementation* preliminary guidelines were prepared for porting Wi-Red on real *embedded* devices:
 - Adjacent Channel Interference (ACI) between channels in a redundant link likely take place when antennas are located close to each other: channels must be spaced as much as possible in the frequency range (e.g., by operating them in the 2.4 and 5 GHz bands)
 - Activities causing joint interference on channels have to be prevented:
 the network manager service must be rewritten from scratch so that
 network scans and reassociation for roaming are displaced in time
 - Mechanisms related to the delivery traffic indication message (DTIM) in the access point cause unwanted latencies for multicast packets:
 always enable Wi-Fi authentication and, possibly, encryption
 (overhead measured on modern adapters is really negligible)

Sample results (guidelines followed)

Int.	Туре	Ch.	\overline{d}	σ_d	$d_{p99.9}$	$d_{p99.99}$	$d_{p99.99}$	PLR [%]
No Interference	Unicast	1	1.34	1.54	15.90	25.70	55.17	0.0
		36	0.20	0.094	0.80	4.52	19.15	0.0
		1+36	0.20	0.085	0.77	3.90	16.77	0.0
	Multicast	1	2.13	2.50	26.56	43.35	117.98	10.58
		36	0.90	0.42	1.34	4.57	108.01	0.047
		1+36	0.90	0.42	1.28	4.41	108.01	0.0052
Interference	Unicast	1	1.43	1.91	20.86	34.48	67.93	0.0
		36	0.76	1.32	16.75	36.16	64.93	0.0
		1+36	0.49	0.42	4.05	7.04	14.77	0.0
	Multicast	1	2.07	2.47	25.82	40.38	77.95	9.41
		36	0.99	0.28	2.41	4.37	108.03	10.92
		1+36	1.06	0.89	12.80	26.68	108.03	1.03

Interference on channels 1 and 36 is very unbalanced – Latencies are expressed in ms

Centralized transmission scheduling

- The key for deterministic behavior in networks with shared transmission support is coordinating data exchanges
 - Intra-system collisions can be prevented completely
 - This does not apply to nodes belonging to neighboring networks...
- The simplest way to do so is using centralized approaches
 - Superframes in IEEE 802.15.4 (WSN)
 - PCF (and HCCA) in IEEE 802.11 (Wi-Fi)
 - Their behavior mostly resembles cyclic executives
- If messages are characterized by firm deadlines the best approach is using an Earliest Deadline First (EDF) scheduler
 - Transmission order is directly driven by timing requirements of data

Conceptual model for data exchanges

- Time-critical data exchanges are mapped on transmission services of the underlying network
 - A simple approach is to use a three-way packet exchange
 - If the source is the coordinator, request and data packets coincide

Reliability and timeliness

- Retransmissions are typically used to cope with frame losses
 - But they take (variable) time to be carried out
- In order to improve reliability not impairing timeliness
 - A certain amount of *planned retransmissions* can to be included directly in the stream set (by augmenting it suitably)
 - The coordinator has to directly manage both the first transmission attempts and retransmissions (as HCCA but according to EDF)
- Schedulability analysis is used to assess feasibility
 - Derivatives of Baker's test can be found in the literature
 - Both the relative deadline D_i and the number R_i of planned retries can be configured on a per-datum basis
 - We aim at obtaining a certain deliver success probability (DSP)

Further improvements

- The proposed scheme can be noticeably improved by
 - Disabling random backoff: collision avoidance is useless (and detrimental) because of the centralized access
 - Setting minimal interframe gaps: improves robustness against interference with external STAs and WLANs
 - Using redundant channels: decreases the packet error probability
 - Reusing the unused bandwidth: permits to accommodate additional retransmissions besides the planned ones without impairing feasibility
- A prototype setup has been implemented that combines all the above mechanisms and tricks
 - DSP experimentally evaluated under very hostile concurrent traffic
 - Results are good and quite close to theoretical expectations

Experimental evaluation

- Both simulation and experimental measurement
 - Cumulative DSP (evaluated on all streams) vs. error probability (e)
 - Bandwidth reuse provides no guarantees but is appealing on average

18

Distributed solutions

- Not as reliable as the centralized ones but interesting
 - Can be applied to any IEEE 802.11e (EDCA)-compliant H/W
 - Random backoff is disabled
 - Interframe spaces are fixed and depend on message priority
 - Kind of a *linear arbitration* (as opposed to binary)
 - Feasibility analysis "à la CAN" can be applied
 - Suitable for event-driven systems with sporadic transmissions
- Very important: no modifications are required to the MAC
 - Just minor changes to drivers are needed
 - Almost all existing commercial adapters can be used in theory
 - Planned for the inclusion in prototypes in our next research projects

Thanks for your attention

Any question?

