
Simulation Based Formal Verification
of Cyber-physical Systems

SyLVaaS: System Level Verification as a Service

Toni Mancini, Annalisa Massini, Federico Mari, Igor Melatti,
Ivano Salvo, Enrico Tronci

Computer Science Department
Sapienza University of Rome, Italy

http://mclab.di.uniroma1.it

http://mclab.di.uniroma1.it

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

System Level Verification of CPSs
• Cyber Physical System (CPS): hw + sw components

⇒ Can be modelled as Hybrid System

• System Level Verification (SLV): to verify that the whole
system (hw+sw) satisfies given specifications

• CPSs of industrial relevance too complex for SLV to be
performed by model checkers for Hybrid Systems

• Main workhorse for SLV: Hardware in The Loop Simulation

2

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Hardware in The Loop Simulation
• Hardware in The Loop Simulation (HILS): replace hardware with

a software simulator
• Supported by Model Based Design Tools as Simulink, VisSim, …

3

System Under Verification (SUV) Simulator
Plant 

Physical System
Controller 

Software System

Operational
scenario

Simulation
output

Pass Fail

uncontrollable
inputs:

faults, changes
in sys params, …
“disturbances”

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

HILS Campaign: Main Obstacles
• Effort needed to define the operational

scenarios defining disturbances to be
injected into the system under
verification.

• Computation time needed to carry out
the simulation campaign itself.

4

SUV Simulator
Plant 

Physical System
Controller 

Software System

Operational
scenario

Simulation
output

Pass Fail

• Degree of assurance achieved at
the end of the HILS campaign: did
we consider all relevant operational
scenarios?

• Graceful degradation: what can we
say about the error probability
during the HILS campaign?

Hard to be done manually

Can take weeks!

“Did I overlook anything?”

“What can I say if I abort
verification now?”

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Our approach to System Level Formal Verification

5

• Effort needed to define the
operational scenarios defining
disturbances to be injected into
the system under verification.

• Degree of assurance: did we
consider all relevant operational
scenarios?

• Graceful degradation: what can
we say about the error
probability during the HILS
campaign?

• Computation time needed to
carry out the simulation
campaign itself.

• Formal model of operational
scenarios (disturbance model)
as a FSA described in a high-
level language (CMurphi)

• Exhaustive system level
verification wrt operational
scenarios defined by the model

• Anytime random algorithm: at
any time we compute an upper
bound to Omission
Probability

• Embarrassing parallel multi-
core approach to speed up
simulation + optimisation

[CAV13, PDP14, DSD14, PDP15, Microprocessors & Microsystems 2016, Fundamenta Informaticae 2016]

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

SyLVaaS
• Introduces Verification as a Service paradigm
• Supports companies in the CPS design business in their daily

verification activities
• Allows keeping both the SUV model and the property to be

verified secret (Intellectual Property protection)

6

Verification  
engineer

Disturbance model 
(CMurphi syntax)

SyLVaaS

Optimised simulation
campaigns for random

exhaustive parallel HILS

http

SUV &
property

Private cluster

1 2

34

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Modelling the Operational Environment

7

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Modelling the Operational Environment

7

SUV

SUV: continuous-time
input-state-output

deterministic
dynamical system

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Modelling the Operational Environment

7

Discrete event sequence u(t)

3

0
1
2

t

u(t)

no
disturb.

d=3

disturbance event

SUV

SUV: continuous-time
input-state-output

deterministic
dynamical system

SUV input: discrete event seq.
• Associates to each (real) t a

disturbance event within [0,d]
• Differs from 0 (no disturbance)

in a finite number of time-points
…no system can withstand an infinite
number of disturbances within a
finite time

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Modelling the Operational Environment

7

Discrete event sequence u(t)

3

0
1
2

t

u(t)

no
disturb.

d=3

disturbance event

SUV Monitor

SUV: continuous-time
input-state-output

deterministic
dynamical system

SUV input: discrete event seq.
• Associates to each (real) t a

disturbance event within [0,d]
• Differs from 0 (no disturbance)

in a finite number of time-points
…no system can withstand an infinite
number of disturbances within a
finite time

Property to be verified:
embedded in a continuous-time
SUV monitor

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Modelling the Operational Environment

7

Discrete event sequence u(t)

3

0
1
2

t

u(t)

no
disturb.

d=3

disturbance event

SUV Monitor
0

1

t
Pass

Fail

SUV: continuous-time
input-state-output

deterministic
dynamical system

SUV input: discrete event seq.
• Associates to each (real) t a

disturbance event within [0,d]
• Differs from 0 (no disturbance)

in a finite number of time-points
…no system can withstand an infinite
number of disturbances within a
finite time

Property to be verified:
embedded in a continuous-time
SUV monitor

SUV output: 0 at
start; goes to and
stays 1 as soon as
error is detected

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Discrete Event Seq’s & Disturbance Traces
We aim at Bounded System Level Formal Verification:
• Bounded time horizon: h
• Bounded time quantum between disturbances: 𝜏

8

Discrete event sequence

𝜏
3

0
1
2

t

u(t) h
(h,d) disturbance trace

00203000001000200
h

d=3

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

A tiny example
• Just one disturbance (fault), always  

recovered within 4 seconds
• At least 5 seconds between two  

consecutive disturbances
• Time quantum 𝜏 = 1 second
• Time horizon h = 6 seconds

Disturbance Model
• Defining all disturbance sequences the SUV should withstand

cannot be done manually for large CPSs
• Approach: use high-level modelling language to define

disturbance model as a Finite State Automaton

9

SUV
1

0
monitor
outputM

o
n
it
o
r

0

1

2

3
u(t)

t

u(t)

t(a) (b) (c)
Fig. 1: (a) A discrete event sequence (d = 3); (b) Our SUV
embedding a monitor; (c) The SUV monitor output.

A. Modelling the Operational Environment

Our System Under Verification (SUV) is a Discrete Event
System (DES), namely a continuous time Input-State-Output
deterministic dynamical system [5] whose inputs are discrete
event sequences. A discrete event sequence is a function
u(t) associating to each (continuous) time instant t 2 R+

a disturbance event (or, simply, disturbance). Disturbances,
encoded by integers in the interval [0, d] (for a given d 2 N+),
represent uncontrollable events (e.g., faults). We use event 0
to represent the event carrying no disturbance. As no system
can withstand an infinite number of disturbances within a finite
time, we require that, in any time interval of finite length, a
discrete event sequence u(t) differs from 0 only in a finite
number of time points (Fig. 1a).

System level verification follows an Assume-Guarantee
approach aimed at showing that the SUV meets its specifica-
tion (Guarantee) as long as the SUV operational environment
behaves as expected (Assume). As we focus on bounded
system level verification, we model (Definition 1) the SUV
operational environment as the sequence of disturbances our
SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive
disturbances.

Definition 1 (Disturbance trace): Let h, d 2 N+. An
(h, d) disturbance trace � is a finite sequence � : [0, h� 1]!
[0, d]. Given ⌧ 2 R+ (time quantum), to an (h, d) disturbance
trace � we can univocally associate a discrete event sequence
u

⌧

�

, defined as follows: for all t 2 R�0, if there exists
j 2 [0, h� 1] such that t = ⌧j then u

⌧

�

(t) = �(j), else u

⌧

�

(t) =
0 (no disturbance).

Thus a disturbance trace � defines an operational scenario
(namely, u

⌧

�

) for our SUV. Fig. 2d shows the discrete event
sequence associated to a disturbance trace. We represent our
SUV operational environment as a finite set of (h, d) distur-
bance traces � = {�0, . . . , �

n�1}, since U

⌧

� = {u

⌧

�0
, . . . ,

u

⌧

�n�1
} (for a given ⌧ 2 R+) defines the operational scenarios

our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and ⌧ small enough
(to faithfully model our SUV operational scenarios), we can
achieve any desired precision. On such considerations rests the
effectiveness of the approach.

As it is typically infeasible to define a SUV operational
environment by explicitly listing all its disturbance traces, we
define an operational environment with a disturbance model
which is in turn defined as the language accepted by a suitable
Finite State Automaton. The following example clarifies this
point.

Example 1: Consider a disturbance model consisting of
one disturbance (namely, a fault) which is always recov-
ered within 4 seconds. Between two consecutive disturbances

0

1

2

3
Disturbance

Generator

Disturbance

Model

disturb. traces

0 2 1 0 0 1

0 2 1 0 3 0

0 2 3 0 1 0

…

…

…

… ⌧

t(a) (b) (c) (d)

Fig. 2: (a) Disturbance model; (b) CMurphi-based disturbance
generator; (c) Generated sequence of disturbance traces (d =

3, h = 6); (d) The discrete event sequence associated to the
trace in the black rectangle in part (c), given time quantum ⌧ .

000000
p

010000
p

000001
p

010001⌦
000010

p
01001⌦

000011⌦ 0101⌦
000100

p
011⌦

000101⌦ 100000
p

00011⌦ 100001
p

001000
p

10001⌦
001001⌦ 1001⌦
00101⌦ 101⌦
0011⌦ 11⌦

(a)

function disturbanceModel(h)
c 0; /* counter */
t 0; /* time */
while t h do

d read(); t t + 1;
if c > 0 then c c� 1;
if d = 1 then

if c > 0 then return ⌦;
else c 4;

return
p

;
end

(b)

Fig. 3: Example 1: (a) Admissible disturbance traces (
p

) and
shortest disturbance sequences that cannot be extended to an
admissible disturbance trace (⌦); (b) Finite state automaton
recognising the language of admissible disturbance traces
(disturbance model).

(faults) there must be at least 5 seconds. We assume that
disturbances can arise only at time steps multiple of ⌧ = 1

second (time quantum). We also set the verification time
horizon to 6 seconds. In Fig. 3a we show disturbance traces
represented as strings of zeros (no disturbance) and ones
(disturbance), with time flowing from left to right. Strings
terminated by

p
denote all the disturbance traces accepted by

the disturbance model (admissible disturbance traces). Strings
terminated by ⌦ are the shortest sequences of disturbances that
cannot be extended to an admissible disturbance trace. Fig. 3b
shows pseudo-code for a finite state automaton recognising
such a language.

We define a finite state automaton for a disturbance model
using the modelling language of a finite state model checker
(namely, CMurphi [6]), along the lines of [1].

B. Modelling the Property to be Verified

Along the lines of [7], we model the property to be verified
with a continuous-time monitor which observes the state of the
system to be verified and checks whether the property under
verification is satisfied (Fig. 1b). The output of the monitor
is 0 as long as the property under verification is satisfied and
becomes and stays 1 (sustain) as soon as the property fails,
thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points
(Fig. 1c). The use of monitors gives us a flexible approach
to model the property to be verified. In particular, it is easy

… overall 8 adm
disturbance traces

SUV
1

0
monitor
outputM

o
n
it
o
r

0

1

2

3
u(t)

t

u(t)

t(a) (b) (c)
Fig. 1: (a) A discrete event sequence (d = 3); (b) Our SUV
embedding a monitor; (c) The SUV monitor output.

A. Modelling the Operational Environment

Our System Under Verification (SUV) is a Discrete Event
System (DES), namely a continuous time Input-State-Output
deterministic dynamical system [5] whose inputs are discrete
event sequences. A discrete event sequence is a function
u(t) associating to each (continuous) time instant t 2 R+

a disturbance event (or, simply, disturbance). Disturbances,
encoded by integers in the interval [0, d] (for a given d 2 N+),
represent uncontrollable events (e.g., faults). We use event 0
to represent the event carrying no disturbance. As no system
can withstand an infinite number of disturbances within a finite
time, we require that, in any time interval of finite length, a
discrete event sequence u(t) differs from 0 only in a finite
number of time points (Fig. 1a).

System level verification follows an Assume-Guarantee
approach aimed at showing that the SUV meets its specifica-
tion (Guarantee) as long as the SUV operational environment
behaves as expected (Assume). As we focus on bounded
system level verification, we model (Definition 1) the SUV
operational environment as the sequence of disturbances our
SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive
disturbances.

Definition 1 (Disturbance trace): Let h, d 2 N+. An
(h, d) disturbance trace � is a finite sequence � : [0, h� 1]!
[0, d]. Given ⌧ 2 R+ (time quantum), to an (h, d) disturbance
trace � we can univocally associate a discrete event sequence
u

⌧

�

, defined as follows: for all t 2 R�0, if there exists
j 2 [0, h� 1] such that t = ⌧j then u

⌧

�

(t) = �(j), else u

⌧

�

(t) =
0 (no disturbance).

Thus a disturbance trace � defines an operational scenario
(namely, u

⌧

�

) for our SUV. Fig. 2d shows the discrete event
sequence associated to a disturbance trace. We represent our
SUV operational environment as a finite set of (h, d) distur-
bance traces � = {�0, . . . , �

n�1}, since U

⌧

� = {u

⌧

�0
, . . . ,

u

⌧

�n�1
} (for a given ⌧ 2 R+) defines the operational scenarios

our SUV should withstand. Note that, by taking h large enough
(as in Bounded Model Checking (BMC)) and ⌧ small enough
(to faithfully model our SUV operational scenarios), we can
achieve any desired precision. On such considerations rests the
effectiveness of the approach.

As it is typically infeasible to define a SUV operational
environment by explicitly listing all its disturbance traces, we
define an operational environment with a disturbance model
which is in turn defined as the language accepted by a suitable
Finite State Automaton. The following example clarifies this
point.

Example 1: Consider a disturbance model consisting of
one disturbance (namely, a fault) which is always recov-
ered within 4 seconds. Between two consecutive disturbances

0

1

2

3
Disturbance

Generator

Disturbance

Model

disturb. traces

0 2 1 0 0 1

0 2 1 0 3 0

0 2 3 0 1 0

…

…

…

… ⌧

t(a) (b) (c) (d)

Fig. 2: (a) Disturbance model; (b) CMurphi-based disturbance
generator; (c) Generated sequence of disturbance traces (d =

3, h = 6); (d) The discrete event sequence associated to the
trace in the black rectangle in part (c), given time quantum ⌧ .

000000
p

010000
p

000001
p

010001⌦
000010

p
01001⌦

000011⌦ 0101⌦
000100

p
011⌦

000101⌦ 100000
p

00011⌦ 100001
p

001000
p

10001⌦
001001⌦ 1001⌦
00101⌦ 101⌦
0011⌦ 11⌦

(a)

function disturbanceModel(h)
c 0; /* counter */
t 0; /* time */
while t h do

d read(); t t + 1;
if c > 0 then c c� 1;
if d = 1 then

if c > 0 then return ⌦;
else c 4;

return
p

;
end

(b)

Fig. 3: Example 1: (a) Admissible disturbance traces (
p

) and
shortest disturbance sequences that cannot be extended to an
admissible disturbance trace (⌦); (b) Finite state automaton
recognising the language of admissible disturbance traces
(disturbance model).

(faults) there must be at least 5 seconds. We assume that
disturbances can arise only at time steps multiple of ⌧ = 1

second (time quantum). We also set the verification time
horizon to 6 seconds. In Fig. 3a we show disturbance traces
represented as strings of zeros (no disturbance) and ones
(disturbance), with time flowing from left to right. Strings
terminated by

p
denote all the disturbance traces accepted by

the disturbance model (admissible disturbance traces). Strings
terminated by ⌦ are the shortest sequences of disturbances that
cannot be extended to an admissible disturbance trace. Fig. 3b
shows pseudo-code for a finite state automaton recognising
such a language.

We define a finite state automaton for a disturbance model
using the modelling language of a finite state model checker
(namely, CMurphi [6]), along the lines of [1].

B. Modelling the Property to be Verified

Along the lines of [7], we model the property to be verified
with a continuous-time monitor which observes the state of the
system to be verified and checks whether the property under
verification is satisfied (Fig. 1b). The output of the monitor
is 0 as long as the property under verification is satisfied and
becomes and stays 1 (sustain) as soon as the property fails,
thus ensuring that we never miss a property failure report, even
when sampling the monitor output only at discrete time points
(Fig. 1c). The use of monitors gives us a flexible approach
to model the property to be verified. In particular, it is easy

FSA recognising admissible disturbance traces 
(we actually use the rich language of the

CMurphi model checker)

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

SyLVaaS Workflow

10

Disturbance
model

D
is

tu
rb

an
ce

 tr
ac

e
ge

ne
ra

tio
n

k: Number of cores
in user cluster

sim.camp 1
sim.camp 2

sim.camp k

slice 1

slice k

slice 2
…

Sl
ic

in
g

of

di
st

ur
ba

nc
e

tra
ce

s

Computation of optimised
random exhaustive

simulation campaign

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

SyLVaaS Workflow

10

Disturbance
model

D
is

tu
rb

an
ce

 tr
ac

e
ge

ne
ra

tio
n

k: Number of cores
in user cluster

sim.camp 1
sim.camp 2

sim.camp k

slice 1

slice k

slice 2
…

Sl
ic

in
g

of

di
st

ur
ba

nc
e

tra
ce

s

Computation of optimised
random exhaustive

simulation campaign

Embarrassing
parallelism

Master-slave
distributed approach

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016 11

slice 1
Computation of optimised
rnd exhaustive simulation

campaigns
sim. campaign 1

embarrassing parallelism in SyLVaaS cluster

…

… slice k
Computation of optimised
rnd exhaustive simulation

campaigns
sim. campaign k

Optimised Rnd Exhaustive Sim. Campaigns

• Optimisation: use of load/store
commands avoids revisiting previously
visited simulation states as much as
possible

• Exhaustiveness: all disturbance traces in
input slice are verified

• Randomness: trace verification order is
randomised

Sequence of simulator commands:
• inj_run(e, t): inject disturbance and

advance simulation
• store(l): store current sim. state into

mass memory
• load(l): set current sim. state from

previously stored state
• free(l): free stored sim. state stored

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Optimised Rnd Exhaustive Sim. Campaigns

12

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Optimised Rnd Exhaustive Sim. Campaigns

12

Slice
1 021001

2 022000

3 022030

4 023110

5 023220

6 030010

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Optimised Rnd Exhaustive Sim. Campaigns

12

Slice
1 021001

2 022000

3 022030

4 023110

5 023220

6 030010

Slice of labelled traces
1 a0b2c1d0e0f1g

2 a0b2c2h0i0j0k

3 a0b2c2h0i3m0n

4 a0b2c3p1q1r0s

5 a0b2c3p2v2w0x

6 a0b3y0z0α1β0λ

Prefix labelling
during generation

(DFS —> free!)

Labels
univocally

denote trace
prefixes

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Simulation campaign (rnd+optimised)
init store(a)

3

load(a) inj_run(0,1) store(b)
inj_run(2,1𝜏) store(c)
inj_run(2,2𝜏) store(i)
inj_run(3,2𝜏)

1 load(c) inj_run(1,3𝜏)
inj_run(1,1𝜏)

6 load(b) free(b)
inj_run(3,3𝜏) inj_run(1,2𝜏)

5
load(c) free(c)
inj_run(3,1𝜏) store(p)
inj_run(2,1𝜏) inj_run(2,2𝜏)

4 load(p) free(p)
inj_run(1,1𝜏) inj_run(1,2𝜏)

2 load(i) free(i) free(a)
inj_run(0,2𝜏)

Optimised Rnd Exhaustive Sim. Campaigns

12

Slice
1 021001

2 022000

3 022030

4 023110

5 023220

6 030010

Slice of labelled traces
1 a0b2c1d0e0f1g

2 a0b2c2h0i0j0k

3 a0b2c2h0i3m0n

4 a0b2c3p1q1r0s

5 a0b2c3p2v2w0x

6 a0b3y0z0α1β0λ

Prefix labelling
during generation

(DFS —> free!)

Labels
univocally

denote trace
prefixes

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Simulation campaign (rnd+optimised)
init store(a)

3

load(a) inj_run(0,1) store(b)
inj_run(2,1𝜏) store(c)
inj_run(2,2𝜏) store(i)
inj_run(3,2𝜏)

1 load(c) inj_run(1,3𝜏)
inj_run(1,1𝜏)

6 load(b) free(b)
inj_run(3,3𝜏) inj_run(1,2𝜏)

5
load(c) free(c)
inj_run(3,1𝜏) store(p)
inj_run(2,1𝜏) inj_run(2,2𝜏)

4 load(p) free(p)
inj_run(1,1𝜏) inj_run(1,2𝜏)

2 load(i) free(i) free(a)
inj_run(0,2𝜏)

Optimised Rnd Exhaustive Sim. Campaigns

12

Slice
1 021001

2 022000

3 022030

4 023110

5 023220

6 030010

Slice of labelled traces
1 a0b2c1d0e0f1g

2 a0b2c2h0i0j0k

3 a0b2c2h0i3m0n

4 a0b2c3p1q1r0s

5 a0b2c3p2v2w0x

6 a0b3y0z0α1β0λ

Prefix labelling
during generation

(DFS —> free!)

Labels
univocally

denote trace
prefixes

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Simulation campaign (rnd+optimised)
init store(a)

3

load(a) inj_run(0,1) store(b)
inj_run(2,1𝜏) store(c)
inj_run(2,2𝜏) store(i)
inj_run(3,2𝜏)

1 load(c) inj_run(1,3𝜏)
inj_run(1,1𝜏)

6 load(b) free(b)
inj_run(3,3𝜏) inj_run(1,2𝜏)

5
load(c) free(c)
inj_run(3,1𝜏) store(p)
inj_run(2,1𝜏) inj_run(2,2𝜏)

4 load(p) free(p)
inj_run(1,1𝜏) inj_run(1,2𝜏)

2 load(i) free(i) free(a)
inj_run(0,2𝜏)

Optimised Rnd Exhaustive Sim. Campaigns

12

Slice
1 021001

2 022000

3 022030

4 023110

5 023220

6 030010

Slice of labelled traces
1 a0b2c1d0e0f1g

2 a0b2c2h0i0j0k

3 a0b2c2h0i3m0n

4 a0b2c3p1q1r0s

5 a0b2c3p2v2w0x

6 a0b3y0z0α1β0λ

Prefix labelling
during generation

(DFS —> free!)

Labels
univocally

denote trace
prefixes

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Embarrassingly Parallel Simulation

13

Simulation carried out on user private cluster (Intellectual Property protection)

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Embarrassingly Parallel Simulation

13

Simulation carried out on user private cluster (Intellectual Property protection)

k overall Simulink
instances on k cores

SUV model +
embedded

property monitor

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Embarrassingly Parallel Simulation

13

sim.camp 1

sim.camp 2

sim.camp k

sim.camp 3

…

Simulation carried out on user private cluster (Intellectual Property protection)

k overall Simulink
instances on k cores

SUV model +
embedded

property monitor

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Embarrassingly Parallel Simulation

13

sim.camp 1

sim.camp 2

sim.camp k

sim.camp 3

…

Simulation carried out on user private cluster (Intellectual Property protection)

k overall Simulink
instances on k cores

SUV model +
embedded

property monitor

Anytime bound to
Omission Probability:

1 - mini ∈ [1,k] (%donei)…

pass /
fail + cntrex

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Fuel Control System

14

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Fuel Control System

14

Three sensors
subject to faults

Throttle degree
as uncontrollable

input

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Fuel Control System

14

Three sensors
subject to faults

Throttle degree
as uncontrollable

input

Property to be verified:  
the “fuel” model

variable is never 0 for
more than one second

SUV Monitor

Monitor output

pass
fail1

0

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Disturbance Models
Two disturbance models:

• sensor faults repaired after 1 second
• at most one fault active at any time
• Model D1: h = 100 sec, 𝜏 = 1s —> 4M dist. traces
• Model D2: h = 200 sec, 𝜏 = 500ms —> 13M dist. traces

15

Disturbance model CMurphi encoding
Ruleset d : FAULT TYPE do

Rule ” I n j e c t Fault ”
t im e s i n c e l a s t f a u l t [d] = �1 &
no f a u l t n e e d s r e p a i r () &
num faults < MAXNUMFAULTS &
num ac t i v e f au l t s () < MAX NUM ACTIVE FAULTS

==> begin

t im e s i n c e l a s t f a u l t [d] := 0 ;
num faults := num faults+1;
t ime s t ep () ;

end ;

Rule ”Repair Fault ”
t im e s i n c e l a s t f a u l t [d] = FAULT DURATION

==> begin �� r epa i r f a u l t d
t im e s i n c e l a s t f a u l t [d] := �1;
t ime s t ep () ;

end ;
End ;

Ruleset d : INPUT TYPE do

Rule ” I n j e c t Input Var ia t ion ”
n o f a u l t n e e d s r e p a i r () &
num inputs < MAX NUM INPUTS &
i s i n pu t v a r i a t i o n a l l ow ed ()

==> begin

num inputs := num inputs + 1 ;
t ime s t ep () ;

end ;
End ;

Rule ”No Disturbance ”
n o f a u l t n e e d s r e p a i r () ==>

begin t ime s t ep () ; end ;
. . .
Finalstate ”Correct Length ”

n o f a u l t s () & num faults <= MAXNUMFAULTS &
num inputs <= MAX NUM INPUTS;

Figure 5: Fragment of the CMurphi code of our disturbance model, showing the rules to inject sensor failures and repairs

erate the same set of n = 12,948,712 scenarios entailed by
our disturbance model of Section 5. It can be seen that r
rapidly grows (much beyond n, the horizontal line) when-
ever we aim at a high coverage ratio (which is required in
order to spot hard to find or rare errors, as this is the ulti-
mate goal of a verification activity). In particular, in case we
limit ourselves to generate exactly r = n random samples,
only a bit more than 60% of all the distinct simulation sce-
narios would be generated on average, and this would yield
an extremely unreliable result of the verification activity. In
order to achieve expected 100% coverage of the simulation
scenarios (which could be yet not su�cient for safety-critical
systems, as this is expected coverage), we should generate a
number of r = 219,528,872 samples, which is about 17 times
higher than n. Table 2(left) shows the time to simulate this
number of scenarios in our case study, when using k = 512
cores (64 8-core machines) in parallel.

6.2 System Level Formal Verification
The System Level Formal Verification (SLFV) methodol-

ogy of Section 2 seamlessly integrates into the current prac-
tice design flow. In particular, steps 1, 2 and 3 of Table 1
are unchanged.

Table 2 (right) shows how steps 4 and 5 of Table 1 are
implemented by SLFV. Step 4, i.e., definition of the sim-
ulation scenarios, is realised by formalising a disturbance
model within the CMurphi modelling language. This task,
described in Section 5.2, requires a system verification engi-
neer having some knowledge in formal methods, and for our
case study took about 2 PD.

The final step 5 of Table 1 is implemented in a completely
automated way, by splitting the set of disturbance traces
entailed by the disturbance model into a number k of slices
(one per available computational core) and computing and
executing optimised simulation campaigns, one per slice.

Note that SLFV enables massive parallelism (see Fig. 3)
as Monte Carlo HILS-based verification does. The only se-
quential step is disturbance trace generation and splitting,
whose overall time is about 5 hours. Table 2 (right) shows
the overall time to perform trace generation and splitting,
and embarrassingly parallel simulation campaign computa-
tion and execution using k = 512 cores (64 8-core machines).

(a) samples (b) simulation time

Figure 6: Monte Carlo vs. SLFV

The overall time to perform steps 4 and 5 (the steps which
di↵er in the two approaches) is 34.4 days for Monte Carlo
and of just 3.3 days for SLFV, with a saving of 90.5%.
Fig. 6b shows the time required to Monte Carlo to achieve

various target expected coverage ratios (black curve) on our
case study and the (actual) time required by exhaustive
SLFV (the horizontal line). Both curves have been ob-
tained by using k = 512 computational cores in parallel. It
can be observed that the coverage achieved by Monte Carlo
within the completion time of our SLFV approach is much
lower than the coverage reached at the intersection point in
Fig. 6a. This is an indirect measure of the amount of opti-
misation possible (and actually performed) during computa-
tion of the SLFV simulation campaigns. As such an optimi-
sation stores and restores previously visited simulator states
(corresponding to disturbance sequences which are prefixes
of multiple disturbance traces) as much as possible, this sig-
nificantly reduces the average disturbance trace simulation
time.

7. RELATED WORK
Formal verification of Simulink models has been widely

investigated, examples are in [34, 29, 37, 9, 8]. Such methods
however focus on discrete time models (e.g., Statecharts,
or Simulink Stateflow restricted to discrete time operators)
with small domain variables. Therefore they are well suited

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Infrastructure
SyLVaaS infrastructure:

• 1 orchestrator
• 1 to 16 slaves

16

SyLVaaS

orchestrator

slave 1

slave 2

slave 16

…

User private cluster:
• 8 to 64 8-core machines  

—> up to 512 Simulink parallel instances

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Trace Generation & Slicing

17

1 function Slave(D, h, L, S, s)
Input: D = (Z, d, dist, adm, ZI , ZF), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration

is delegated to slaves
Input: S, number of available slaves
Input: s 2 [1, S], id of this slave

2 � s+ 1; // next label to be used

3 while true do
// slave is idle

4 wait for a message (z0, b, �
�) from Orchestrator;

// �� = l0, d0, l1, d1, . . . , lL
5 let �̃� be an array of variables l̃0, d̃0, l̃1, d̃1, . . . , l̃h;

// start computation bunch b
6 stack empty stack; �b empty sequence;
7 z z0;

// follow �� to reach root of req.

subtree & copy it into �̃�

8 for j 0 to L� 1 do
9 l̃j lj ; d̃j dj ; z dist(z, d̃j);

10 l̃L lL;
// start DFS from there

11 push(stack, (z, 0));
12 while stack is not empty do
13 (z, d̂) top(stack);
14 if d̂ d then
15 top(stack) (z, d̂+ 1); j L� 1 + |stack|;
16 if adm(z, d̂) then
17 d̃j d̂; l̃j+1 �; � �+ S + 1;
18 if j < h then push(stack, (dist(z, d̂), 0));
19 else if z 2 ZF then append (b, �̃�) to �s;
20 else pop(stack);

Algorithm 2: Slave

V. EXPERIMENTS

In this section we experimentally evaluate SyLVaaS, and in
particular our new parallel disturbance generation algorithm of
Section IV and the cloud deployment of the overall Verification
as a Service (VaaS) infrastructure.

A. SyLVaaS Experimental Deployment
We deployed SyLVaaS on overall 17 computational cores

allocated to 5 different machines. One core (on a machine
equipped with 2 Intel Xeon 2.83GHz CPUs and 8GB RAM)
is dedicated to Orchestrator processes, while 16 cores evenly
distributed in 4 identical machines (each one equipped with
2 Intel Xeon 2.27GHz CPUs and 24GB RAM) are dedicated
to Slave processes. The SyLVaaS web interface application
resides on a yet another host (a tiny virtual machine), external
to the cluster and directly connected to the Internet.

B. Case Study
We use the same case study of [15], [2], [3], [4], i.e., the

Fuel Control System (FCS) model included in the Simulink
distribution. The FCS has three sensors subject to faults
(disturbances).

We used two disturbance models for the FCS, D1 and D2.
Model D1 (described in more detail in [2]) has a horizon of
h = 100 and defines 4,023,955 disturbance traces. Model D2 is
defined extending D1 with more complex operational scenarios
and defines 12,948,712 disturbance traces over a horizon of
h = 200. A detailed description of D1 and D2 (not relevant for
the evaluation of our experiments below) can be downloaded
from the SyLVaaS Web site.

#slaves
(S)

disturbance model D1 disturbance model D2

time (h:m:s) speedup efficiency time (h:m:s) speedup efficiency

1 0:32:32 1.00⇥ 100.00% 4:45:47 1.00⇥ 100.00%
8 0:5:32 5.88⇥ 73.50% 0:43:2 6.64⇥ 83.00%
16 0:3:11 10.22⇥ 63.88% 0:26:16 10.88⇥ 68.00%

TABLE I: Results on parallel generation of disturbance traces

#slices (k) D1 (h:m:s) D2 (h:m:s)

128 0:4:1 0:8:7
256 0:4:32 0:11:25
512 0:4:52 0:13:17

TABLE II: Results on slicing of disturbance traces

C. Experimental Results
1) Parallel Disturbance Trace Generation: Table I shows

the time needed by SyLVaaS to generate the disturbance
traces entailed by D1 (4,023,955 traces) and D2 (12,948,712
traces), when using a varying number S of parallel slaves. The
level (depth) L to which the Orchestrator bounds its search
and triggers a Slave has been fixed at h/2 after preliminary
experiments. This value seems to be quite stable among various
models. Intuitively, a lower value for L typically makes compu-
tation bunches (performed by Slaves) too long, hindering load-
balancing. A greater value for L typically makes the (single)
Orchestrator carry out too much work. In both cases the overall
generation time is longer. The number of computation bunches
executed by the algorithm is 477,727 for disturbance model D1
and 1,681,594 for D2.

For each value for S, Table I reports the overall time
for generating the whole set of disturbance traces for both
disturbance models (columns “time”), as well as speedup and
efficiency with respect to the execution time of the sequential
algorithm (the first row in Table I referring to S = 1).

As usual in the evaluation of parallel algorithms, for each
value of S, the speedup is defined as t1/tS , where t1 and
tS are, respectively, the execution times of our disturbance
trace generation algorithm when using 1 (sequential algorithm)
and S parallel slaves. For each value of S, the efficiency is
computed as the ratio between the speedup and S.

2) Disturbance Trace Slicing: Table II shows the time
needed by SyLVaaS to compute k slices from the disturbance
traces generated using S = 16 slaves from disturbance models
D1 and D2, for various values of k, which denotes the number
of computational cores available at the user side for parallel
simulation. To ease comparison of our results with those in
[3], we used the same values of k as those used in that paper.

3) SyLVaaS Complete Workflow: Table III reports the time
needed to compute (in parallel) the k simulation campaigns
(column “sim. campaign comp. time”) and the overall SyLVaaS
response time (summing up trace generation, splitting, and
simulation campaign optimisation times, column “overall
time”), for each disturbance model (D1 or D2) and each value
for k. Results in Table III have been obtained using S = 16
slaves during trace generation and 16 cores to compute the k
simulation campaigns (thus, on average, each core computed
k/16 campaigns).

4) Download of Simulation Campaigns: SyLVaaS stores
simulation campaigns computed as above in .zip archives
which are then downloaded by the user. In our experiments,
the size of such files is in the order of a few hundreds of
MB. Hence, their download into the user cluster can be done
seamlessly over a standard broad-band Internet connection.

Parallel generation of disturbance traces
1 function Slave(D, h, L, S, s)

Input: D = (Z, d, dist, adm, ZI , ZF), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration

is delegated to slaves
Input: S, number of available slaves
Input: s 2 [1, S], id of this slave

2 � s+ 1; // next label to be used

3 while true do
// slave is idle

4 wait for a message (z0, b, �
�) from Orchestrator;

// �� = l0, d0, l1, d1, . . . , lL
5 let �̃� be an array of variables l̃0, d̃0, l̃1, d̃1, . . . , l̃h;

// start computation bunch b
6 stack empty stack; �b empty sequence;
7 z z0;

// follow �� to reach root of req.

subtree & copy it into �̃�

8 for j 0 to L� 1 do
9 l̃j lj ; d̃j dj ; z dist(z, d̃j);

10 l̃L lL;
// start DFS from there

11 push(stack, (z, 0));
12 while stack is not empty do
13 (z, d̂) top(stack);
14 if d̂ d then
15 top(stack) (z, d̂+ 1); j L� 1 + |stack|;
16 if adm(z, d̂) then
17 d̃j d̂; l̃j+1 �; � �+ S + 1;
18 if j < h then push(stack, (dist(z, d̂), 0));
19 else if z 2 ZF then append (b, �̃�) to �s;
20 else pop(stack);

Algorithm 2: Slave

V. EXPERIMENTS

In this section we experimentally evaluate SyLVaaS, and in
particular our new parallel disturbance generation algorithm of
Section IV and the cloud deployment of the overall Verification
as a Service (VaaS) infrastructure.

A. SyLVaaS Experimental Deployment
We deployed SyLVaaS on overall 17 computational cores

allocated to 5 different machines. One core (on a machine
equipped with 2 Intel Xeon 2.83GHz CPUs and 8GB RAM)
is dedicated to Orchestrator processes, while 16 cores evenly
distributed in 4 identical machines (each one equipped with
2 Intel Xeon 2.27GHz CPUs and 24GB RAM) are dedicated
to Slave processes. The SyLVaaS web interface application
resides on a yet another host (a tiny virtual machine), external
to the cluster and directly connected to the Internet.

B. Case Study
We use the same case study of [15], [2], [3], [4], i.e., the

Fuel Control System (FCS) model included in the Simulink
distribution. The FCS has three sensors subject to faults
(disturbances).

We used two disturbance models for the FCS, D1 and D2.
Model D1 (described in more detail in [2]) has a horizon of
h = 100 and defines 4,023,955 disturbance traces. Model D2 is
defined extending D1 with more complex operational scenarios
and defines 12,948,712 disturbance traces over a horizon of
h = 200. A detailed description of D1 and D2 (not relevant for
the evaluation of our experiments below) can be downloaded
from the SyLVaaS Web site.

#slaves
(S)

disturbance model D1 disturbance model D2

time (h:m:s) speedup efficiency time (h:m:s) speedup efficiency

1 0:32:32 1.00⇥ 100.00% 4:45:47 1.00⇥ 100.00%
8 0:5:32 5.88⇥ 73.50% 0:43:2 6.64⇥ 83.00%
16 0:3:11 10.22⇥ 63.88% 0:26:16 10.88⇥ 68.00%

TABLE I: Results on parallel generation of disturbance traces

#slices (k) D1 (h:m:s) D2 (h:m:s)

128 0:4:1 0:8:7
256 0:4:32 0:11:25
512 0:4:52 0:13:17

TABLE II: Results on slicing of disturbance traces

C. Experimental Results
1) Parallel Disturbance Trace Generation: Table I shows

the time needed by SyLVaaS to generate the disturbance
traces entailed by D1 (4,023,955 traces) and D2 (12,948,712
traces), when using a varying number S of parallel slaves. The
level (depth) L to which the Orchestrator bounds its search
and triggers a Slave has been fixed at h/2 after preliminary
experiments. This value seems to be quite stable among various
models. Intuitively, a lower value for L typically makes compu-
tation bunches (performed by Slaves) too long, hindering load-
balancing. A greater value for L typically makes the (single)
Orchestrator carry out too much work. In both cases the overall
generation time is longer. The number of computation bunches
executed by the algorithm is 477,727 for disturbance model D1
and 1,681,594 for D2.

For each value for S, Table I reports the overall time
for generating the whole set of disturbance traces for both
disturbance models (columns “time”), as well as speedup and
efficiency with respect to the execution time of the sequential
algorithm (the first row in Table I referring to S = 1).

As usual in the evaluation of parallel algorithms, for each
value of S, the speedup is defined as t1/tS , where t1 and
tS are, respectively, the execution times of our disturbance
trace generation algorithm when using 1 (sequential algorithm)
and S parallel slaves. For each value of S, the efficiency is
computed as the ratio between the speedup and S.

2) Disturbance Trace Slicing: Table II shows the time
needed by SyLVaaS to compute k slices from the disturbance
traces generated using S = 16 slaves from disturbance models
D1 and D2, for various values of k, which denotes the number
of computational cores available at the user side for parallel
simulation. To ease comparison of our results with those in
[3], we used the same values of k as those used in that paper.

3) SyLVaaS Complete Workflow: Table III reports the time
needed to compute (in parallel) the k simulation campaigns
(column “sim. campaign comp. time”) and the overall SyLVaaS
response time (summing up trace generation, splitting, and
simulation campaign optimisation times, column “overall
time”), for each disturbance model (D1 or D2) and each value
for k. Results in Table III have been obtained using S = 16
slaves during trace generation and 16 cores to compute the k
simulation campaigns (thus, on average, each core computed
k/16 campaigns).

4) Download of Simulation Campaigns: SyLVaaS stores
simulation campaigns computed as above in .zip archives
which are then downloaded by the user. In our experiments,
the size of such files is in the order of a few hundreds of
MB. Hence, their download into the user cluster can be done
seamlessly over a standard broad-band Internet connection.

Slicing of disturbance traces

4M traces 13M traces

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Computation of optimised random
exhaustive simulation campaigns via
embarrassing parallelism (16 cores)

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Overall SyLVaaS response time  
(gen+slicing+sim.camp.comp.)

Computation of optimised random
exhaustive simulation campaigns via
embarrassing parallelism (16 cores)

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Overall SyLVaaS response time  
(gen+slicing+sim.camp.comp.)

Computation of optimised random
exhaustive simulation campaigns via
embarrassing parallelism (16 cores)

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

SyLVaaS vs. Simulink

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Overall SyLVaaS response time  
(gen+slicing+sim.camp.comp.)

Computation of optimised random
exhaustive simulation campaigns via
embarrassing parallelism (16 cores)

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

Sy
LV

aa
S

4x  
speedup

SyLVaaS vs. Simulink

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Overall SyLVaaS response time  
(gen+slicing+sim.camp.comp.)

Computation of optimised random
exhaustive simulation campaigns via
embarrassing parallelism (16 cores)

Experiments: Random Exhaustive Campaigns

18

disturbance model D1 disturbance model D2

#slices
(k)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

sim. campaign
comp. time (h:m:s)

overall time
(h:m:s)

128 0:1:44 0:8:56 0:4:1 0:38:24
256 0:0:42 0:8:25 0:2:27 0:40:8
512 0:0:13 0:8:16 0:0:24 0:39:57

TABLE III: Results on the entire SyLVaaS workflow

VI. CONCLUSIONS

We have presented SyLVaaS, a Web-based software-as-a-
service tool for HILS-based System Level Formal Verification
(SLFV). Such a tool allows verification engineers to obtain
from a Web service the most important part of their HILS
campaigns, i.e. a set of simulation campaigns to exercise
the System Under Verification (SUV) on all the relevant
operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user
premises, SyLVaaS provides full Intellectual Property (IP)
protection for both the SUV model, the property to be verified,
and the user verification flow. The simulation may be carried
out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality
of service provided by SyLVaaS, we also proposed a new
algorithm to parallelise the most computationally intensive part
of the SyLVaaS workflow, i.e., the generation of disturbance
traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embar-
rassingly parallel algorithm, with our new parallel disturbance
trace generator the entire SyLVaaS workflow can benefit of a
cluster of machines at the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-
based software-as-a-service tool for HILS-based SLFV.

ACKNOWLEDGEMENTS

This research has received funding from the EU Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ments n. 317761 (SmartHG) and n. 600773 (PAEON).

REFERENCES
[1] R. Alur, “Formal verification of hybrid systems,” in Proc. EMSOFT

2011. ACM, 2011, pp. 273–278.
[2] T. Mancini, F. Mari, A. Massini, I. Melatti, F. Merli, and E. Tronci,

“System level formal verification via model checking driven simula-
tion,” in Proc. CAV 2013, ser. LNCS, vol. 8044. Springer, 2013, pp.
296–312.

[3] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime
system level verification via random exhaustive hardware in the loop
simulation,” in Proc. DSD 2014. IEEE, 2014.

[4] ——, “System level formal verification via distributed multi-core hard-
ware in the loop simulation,” in Proc. PDP 2014. IEEE, 2014.

[5] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, and M. Venturini Zilli,
“Exploiting transition locality in automatic verification of finite state
concurrent systems,” STTT, vol. 6, no. 4, pp. 320–341, 2004.

[6] S. Ben-David, O. Grumberg, T. Heyman, and A. Schuster, “Scalable
distributed on-the-fly symbolic model checking.” STTT, vol. 4, no. 4,
pp. 496–504, 2003.

[7] D. Kunkle, V. Slavici, and G. Cooperman, “Parallel disk-based
computation for large, monolithic binary decision diagrams,” in Proc.
PASCO 2010. ACM, 2010, pp. 63–72.

[8] E. Ábrahám, T. Schubert, B. Becker, M. Fränzle, and C. Herde,
“Parallel sat solving in bounded model checking,” Journal of Language
and Computation, vol. 21, no. 1, pp. 5–21, 2011.

[9] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan, “Parallel and distributed model checking in Eddy.”
STTT, vol. 11, no. 1, pp. 13–25, 2009.

[10] J. Barnat, L. Brim, M. Ceska, and P. Rockai, “Divine: Parallel
distributed model checker,” in Proc. 9th Intl. Workshop on Parallel
and Distributed Methods in Verification and 2nd Intl. Workshop on
High Performance Computational Systems Biology, 2010, pp. 4–7.

[11] I. Schaefer and T. Sauer, “Towards verification as a service,” in Eternal
Systems, ser. Communications in Computer and Information Science.
Springer, 2012, vol. 255, pp. 16–24.

[12] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Distributed CTL
model checking in the cloud,” CoRR, vol. abs/1310.6670, 2013.

[13] G. Cabodi and S. Singh, Eds., Proc. FMCAD 2012. IEEE, 2012.
[14] G. Verzino, F. Cavaliere, F. Mari, I. Melatti, G. Minei, I. Salvo,

Y. Yushtein, and E. Tronci, “Model checking driven simulation of sat
procedures,” in Proc. SpaceOps 2012, 2012.

[15] P. Zuliani, A. Platzer, and E. Clarke, “Bayesian statistical model
checking with application to Simulink/Stateflow verification,” in Proc.
HSCC 2010. ACM, 2010, pp. 243–252.

[16] E. Tronci, T. Mancini, I. Salvo, S. Sinisi, F. Mari, I. Melatti, A. Massini,
F. Davı̀, T. Dierkes, R. Ehrig, S. Röblitz, B. Leeners, T. H. C. Krüger,
M. Egli, and F. Ille, “Patient-specific models from inter-patient biolog-
ical models and clinical records,” in Proc. FMCAD 2014. FMCAD
Inc., 2014, pp. 207–214.

[17] T. Mancini, F. Mari, I. Melatti, I. Salvo, E. Tronci, J. Gruber, B. Hayes,
M. Prodanovic, and L. Elmegaard, “Demand-aware price policy synthe-
sis and verification services for smart grids,” in Proc. SmartGridComm
2014. IEEE, 2014.

[18] K. Sen, M. Viswanathan, and G. Agha, “On statistical model checking
of stochastic systems,” in Proc. CAV 2005, ser. LNCS, vol. 3576.
Springer, 2005, pp. 266–280.

[19] E. Tronci, G. Della Penna, B. Intrigila, and M. Venturini Zilli, “A
probabilistic approach to automatic verification of concurrent systems,”
in Proc. APSEC 2001. IEEE, 2001, pp. 317–324.

[20] R. Grosu and S. Smolka, “Monte carlo model checking,” in Proc.
TACAS 2005, ser. LNCS, vol. 3440. Springer, 2005, pp. 271–286.

[21] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time Simulink to Lustre,” ACM Trans. Emb. Comp. Syst., vol. 4, no. 4,
pp. 779–818, 2005.

[22] M. Whalen, D. Cofer, S. Miller, B. Krogh, and W. Storm, “Integration
of formal analysis into a model-based software development process,”
in Proc. FMICS 2007, 2007, pp. 68–84.

[23] K. Nanshi and F. Somenzi, “Guiding simulation with increasingly
refined abstract traces,” in Proc. DAC 2006. ACM, 2006, pp. 737–742.

[24] F. De Paula and A. Hu, “An effective guidance strategy for
abstraction-guided simulation,” in Proc. DAC 2007. ACM, 2007, pp.
63–68.

[25] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček,
“Divine: a tool for distributed verification,” in Proc. CAV 2006.
Springer, 2006, pp. 278–281.

[26] G. Holzmann, “Parallelizing the SPIN model checker,” in Proc. SPIN
2012. Springer, 2012, pp. 155–171.

[27] A. Laarman, J. van de Pol, and M. Weber, “Boosting multi-core
reachability performance with shared hash tables,” in Proc. FMCAD
2010, IEEE, 2010, pp. 247–255.

[28] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Model based synthesis of
control software from system level formal specifications,” ACM Trans.
Softw. Eng. and Method., vol. 23, no. 1, 2014.

[29] ——, Theoretical Aspects of Computing – ICTAC 2012, ser. LNCS.
vol. 7521. Springer, 2012, pp. 243–258.

[30] V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci, “On model
based synthesis of embedded control software,” in Proc. EMSOFT
2012, ACM, 2012, pp. 227–236.

[31] ——, “Automatic control software synthesis for quantized discrete time
hybrid systems,” in Proc. CDC 2012. IEEE, 2012, pp. 6120–6125.

[32] ——, “On-the-fly control software synthesis,” in Proc. SPIN 2013, ser.
LNCS, vol. 7976. Springer, 2013, pp. 61–80.

[33] ——, “A map-reduce parallel approach to automatic synthesis of
control software,” in Proc. SPIN 2013, ser. LNCS, vol. 7976. Springer,
2013, pp. 43–60.

[34] F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Synthesis of quantized
feedback control software for discrete time linear hybrid systems,” in
Proc. CAV 2010, ser. LNCS, vol. 6174. Springer, 2010, pp. 180–195.

[35] G. Della Penna, B. Intrigila, E. Tronci, and M. Venturini Zilli,
“Synchronized regular expressions,” Acta Inf., vol. 39, no. 1, pp.
31–70, 2003.

[36] E. Sontag, Mathematical Control Theory: Deterministic Finite
Dimensional Systems, ser. Texts in Applied Math. Springer, 1998.

4M traces 13M traces
Computation of random exhaustive optimised simulation campaigns:

Sy
LV

aa
S

4x  
speedup

SyLVaaS vs. Simulink

-0.5

0

0.5

1

1.5

 0 0.2 0.4 0.6 0.8 1
coverage

k=128

k=256

k=512

completion time
estimation error

Simulation Based Formal Verification of Cyber-physical Systems – IWES 2016

Conclusions
SyLVaaS: System Level Verification as a Service

• Given formal model of operational environment
• Efficiently computes random exhaustive simulation campaigns
• Approach scales well: additional experiments with dist. models yielding 40M traces
• Campaigns run embarrassingly in parallel on all Simulink instances available on

private user cluster
• Campaigns optimise simulation activities (4x speedups) by storing/restoring

intermediate simulation states as much as possible (depending on available mass
memory space on user cluster)

• Graceful degradation: omission probability bound available anytime during
verification

• Completion time estimation  
available anytime during verification

• Both SUV model and property to  
be verified kept secret  
(Intellectual Property protection)

19

Thank you!

Toni Mancini, Annalisa Massini, Federico Mari, Igor Melatti,
Ivano Salvo, Enrico Tronci

Computer Science Department
Sapienza University of Rome, Italy

http://mclab.di.uniroma1.it

Simulation Based Formal Verification of  
Cyber-physical Systems

SyLVaaS: System Level Verification as a Service

http://mclab.di.uniroma1.it

