
An Integrated ESL Methodology
for Developing Embedded Parallel

Systems in Mixed-Criticality
Scenarios

Author:

Vittoriano Muttillo
vittoriano.muttillo@graduate.univaqit

1st Italian Workshop on
Embedded Systems (IWES 2016)

University of L’Aquila
Center of Excellence DEWS

Department of Information Engineering, Computer Science
and Mathematics DISIM

Summary
1. Introduction

2. Safety Assurance Standards

3. Mixed Criticality Systems (MCS)
• MCS state-of-the-art Model
• MCS Design
• Industrial and Academic MCS Implementations

5. ESL Methodology
• Concurrency and process calculi
• Communicating sequential processes (CSP), model checking and Timed CSP
• HW/SW Co-Design Methodology for MCS
• UML/MARTE profile for MCS

6. Conclusion and Future Works

1st Italian Workshop on Embedded Systems, 20-09-2016

1.
Introduction

“Brief
Introduction to
Embedded and

Mixed Criticality
Systems”

Embedded Systems
 In contrast to generic reprogrammable general purpose computer, an embedded system is

composed of a set of tasks already known during the development. This make possible to identify a
hardware/software combination specifically designed for such an application.

General Purpose Computer

1st Italian Workshop on Embedded Systems, 20-09-2016

Embedded Systems

 Hardware can be reduced to a minimum in
order to contain space thus limiting
consumption, processing times (higher
efficiency) and manufacture cost,
considering F/NF requirements.

 Many embedded systems are real-time
systems, in which “the correctness of the
system behavior depends not only on the
logical results of the computations, but
also on the physical time when these
results are produced”

 In contrast to generic reprogrammable general purpose computer, an embedded system is
composed of a set of tasks already known during the development. This make possible to identify a
hardware/software combination specifically designed for such an application.

Embedded/real-time

1st Italian Workshop on Embedded Systems, 20-09-2016

Mixed-Criticality Systems

 Different criticality applications are
engineered to different levels of assurance,
with high criticality applications being the
most costly to design and verify.

 Mixed-Criticality systems are typically
embedded in more complex systems such
as an aircraft whose safety must be
ensured.

 A mixed criticality system is “an integrated suite of HW, OS, middleware services and application
software that supports the concurrent execution of safety-critical, mission-critical, and non-
critical software within a single, secure computing platform”, i.e. a system containing computer
hardware and software that executes concurrently several applications of different criticality (such as
safety-critical and non-safety critical).

Embedded/real-time/ safety-critical/mixed-critical

1st Italian Workshop on Embedded Systems, 20-09-2016

2.
Safety
Assurance
Standards

“Criticality is a
designation of the
level of assurance

against failure
needed for a system

component”

 Industry has shown a growing interest in integrating and running independently-
developed applications of different “criticalities” in the same (often multicore)
platform. Such integrated systems are commonly referred to as mixed-criticality
systems (MCS).

 Most of the MCS-related research cite the safety-related standards associated to each
application domain (e.g. aeronautics, space, railway, automotive) to justify their
methods and results. However, those standards are not freely available and do not
always clearly and explicitly specify the requirements for mixed-criticality

 New MC task model is in essence the result of combining the standard hard real-time
requirements (studied by the real-time research community since the 70’s) with the
notion of “criticality” of execution.

Safety Related Standards

1st Italian Workshop on Embedded Systems, 20-09-2016

 During a typical development life cycle of a safety-critical system, the behavior and
characteristics that are expected from the system are expressed in the form of a list of
requirements

 based on the system operational requirements (what the system is expected to do) and also
considering non-functional properties related to safety, security and performance, including
timing and energy constraints.

 System safety assessment process must be carried out as part of the development life
cycle to determine and categorize the failure conditions of the system (e.g. through a
hazard analysis).

 safety-related requirements are derived as a result of the system safety assessment process,
which may include functional, integrity, dependability requirements and design constraints.

 Safety-related requirements are allocated to hardware and software components,
thereby specifying the mechanisms required to prevent the faults or to mitigate their
effects and avoid the propagation of failures.

System Design and Development Assurance Process

1st Italian Workshop on Embedded Systems, 20-09-2016

 Most safety standards use the concept of an integrity level, which is assigned to a system
or a function. This level will be based on an initial analysis of the consequences of software
going wrong. Both standards have clear guidance on how to identify integrity level.

 DO-178C has Software Development Assurance Level (DAL), which are assigned based on the
outcome of "anomalous behavior" of a software component – Level A for "Catastrophic Outcome",
Level E for "No Safety Effect".

 ISO26262 has ASIL (Automotive Safety Integrity Level), based on the exposure to issues affecting
the controllability of the vehicle. ASILs range from D for the highest severity/most probable
exposure, and A as the least.

Integrity Level

1st Italian Workshop on Embedded Systems, 20-09-2016

 GENERAL (IEC-61508) based on SIL (Safety Integrity Level): Functional safety standards
(of electrical, electronic, and programmable electronic)

 AUTOMOTIVE (ISO26262) based on ASIL (Automotive Safety Integrity Level) (Road vehicles - Functional safety)
 NUCLEAR POWER (IEC 60880-2)
 MEDICAL ELECTRIC (IEC 60601-1)
 PROCESS INDUSTRIES (IEC 61511)
 RAILWAY (CENELEC EN 5O126/128/129])
 MACHINERY (IEC 62061)

 AVIONIC based on DAL (Development Assurance Level) related to ARP4761 and ARP4754

 DO-178B (Software Considerations in Airborne Systems and Equipment Certification)
 DO-178C (Software Considerations in Airborne Systems and Equipment Certification, replace DO-178B)
 DO-254 (Airborne - Design), similar to DO-178B, but for hardware
 DO-160F (Airborne - Test)

 MEDICAL DEVICE

 FDA-21 CFR
 IEC-62304

Safety Standards

1st Italian Workshop on Embedded Systems, 20-09-2016

3.
Mixed Criticality
Systems Analysis

“The more
confidence one needs in a task

execution time bound
(the less tolerant one is of

missed deadlines), the larger
and more conservative that

bound tends to become in
practice”

 Almost 200 papers treating of the scheduling of MCS have been referenced in York
report, and tens of related papers are still published every year. Most of the works about
MCS published by the real-time scheduling research community are based on a model
proposed by Vestal.

 System has several modes of execution, say modes {1, 2, … , L}. The application system is a set
of real-time tasks, where each task τi is characterized by a period Ti and a deadline Di (as in
the usual real-time task model), an assurance level li and a set of worst-case computational
estimates {𝑪𝒊,𝟏, 𝑪𝒊,𝟐, … , 𝑪𝒊,𝒍𝒊}, under the assumption that 𝑪𝒊,𝟏 ≤ 𝑪𝒊,𝟐 ≤ . . . ≤ 𝑪𝒊,𝒍𝒊

 The different WCET estimates are meant to model estimations of the WCET at different
assurance levels. The worst time observed during tests of normal operational
scenarios might be used as 𝑪𝒊,𝟏 whereas at each higher assurance level the
subsequent estimates 𝑪𝒊,𝟐, … , 𝑪𝒊,𝒍𝒊 are assumed to be obtained by more conservative
WCET analysis techniques.

MCS state-of-the-art Model (1)

1st Italian Workshop on Embedded Systems, 20-09-2016

 The system starts its execution in mode 1 and all tasks are scheduled to execute on the
core[s]. Then at runtime, if the system is running in mode k then each time the execution
budget 𝑪𝒊,𝒌 of a task τi is overshot, the system switches to mode k+1. It results from this
transition from mode k to mode k+1 that all the tasks of criticality not greater than k (i.e., li ≥

k) are suspended. Mechanisms have also been proposed to eventually re-activate the
dropped tasks at some later points in time.

 one of the simplifications of this model is the Vestal’s model with only two modes, usually
referred to as LO and HI modes (which stand for Low- and High-criticality modes).

 Multiple variations of that scheduling scheme exist, some for single-core, others for
multicore architectures. In the case of multicore, both global and partitioned scheduling
techniques have been studied and solutions for fixed priority scheduling (RM), Earliest
Deadline First (EDF) and time triggered scheduling have been proposed in literature.

 some works also propose to change the priorities or the periods of the tasks during a mode
change rather than simply stopping the less critical ones.

MCS state-of-the-art Model (2)

1st Italian Workshop on Embedded Systems, 20-09-2016

MCS Design - OFFIS

1st Italian Workshop on Embedded Systems, 20-09-2016

Industrial and Academic MCS Case Study

Safety critical tasks: All tasks which are needed for a stable and
safety flight of the multi-rotor system, e.g. the flight and navigation
controllers. An error, like missing a deadline, will cause a crash-
landing.
Mission critical tasks: All tasks which are not needed for a safe
flight, but may also have defined deadlines, e.g. tasks which are
belonging to the payload processing, like video processing.
Uncritical tasks: All tasks which are not needed either for a safe
flight or a correct execution of the mission task, e.g. control of the
debug LEDs or transmission of telemetry data.

TARGET

MULTICORE

PROCESSING

PLATFORM

PERIPHERAL

DEVICE 1
PERIPHERAL

DEVICE 2

TEST

CONSOLE

JTAG

SERIAL

ETHERNET

SPACEWIRE

Application Stack:

(Telemetry,

file transfers)

Test Software

(Test input, analysis

and benchmarking)

DEMO PLATFORM

REFERENCE

SOFTWARE

SPACEWIRE

GR-CPCI-LEON4-N2X

1st Italian Workshop on Embedded Systems, 20-09-2016

Separation technique:
 SW separation: scheduling policy, partitioning with HVP, NoC
 HW separation: one task per core, one task on HW ad hoc

(DSP, FPGA), spatial partitioning with HVP, NoC

 HW:
 Temporal isolation: Scheduling HW
 Spatial isolation: separated Task on dedicated components

 Single processor:
 Temporal isolation: Scheduling policy with SO, RTOS, or HVP
 Spatial isolation : MMU, MPU, HVP Partitioning

 Multi-processor (MIMD)
 Architecture: shared memory systems, UMA (SMP),

NUMA, distributed systems, NoC
 Temporal isolation : Scheduling policy con SO, RTOS, or HVP
 Spatial isolation : MMU, MPU, HVP partitioning

Tecnologies:
 HW: DSP, FPGA, HW ad hoc, Processor
 SW: OS, RTOS, HVP, Bare-metal
 PROCESSORI: LEON3, ARM, MICROBLAZE
 HVP: PikeOS, Xtratum, Xen
 RTOS: eCos, RTEMS, FreeRTOS, Threadx, VxWorks, Erica
 OS: Linux

MCS Summary
HW Single core Multi-core Many-core

Spatial
0-level

scheduling

0-level
scheduling

0-level
scheduling

0-level
scheduling

1-level
scheduling

1-level
scheduling

1-level
scheduling

2-level
scheduling

2-level
scheduling

2-level
scheduling

Temporal
0-level

scheduling

0-level
scheduling

0-level
scheduling

0-level
scheduling

1-level
scheduling

1-level
scheduling

1-level
scheduling

2-level
scheduling

2-level
scheduling

2-level
scheduling

1st Italian Workshop on Embedded Systems, 20-09-2016

4.
ESL
Methodology

“You will never strike
oil by drilling through

the map! -
Solomon Wolf Golomb”

 Concurrency is the decomposability property of a program, algorithm, or
problem into order-independent or partially-ordered components or units.

 A number of mathematical models have been developed for general
concurrent computation (Petri nets, process calculi, the Parallel Random
Access Machine model, the Actor model etc.).

 Process Calculi (or Process Algebras) are a diverse family of related approaches for
formally modelling concurrent systems.

 Communicating Sequential Processes (CSP)
 The Calculus of Communicating Systems (CCS)
 The Algebra of Communicating Processes (ACP) and so on.

 CSP is based on message passing via channels and was highly influential in the
design of the OCCAM programming language.

Concurrency, Process Calculi and CSP

1st Italian Workshop on Embedded Systems, 20-09-2016

 Timed CSP was first proposed in 1986 by Reed and Roscoe as a real-time extension of
the process algebra CSP.

 Timed CSP added a single primitive to the language CSP - WAIT t, for any time t - yet differed
at the denotation level from the CSP. By syntactically transforming a Timed CSP process into a
CSP one (dropping all WAIT t terms), much information is preserved, and under appropriate
conditions a number of properties can be formally established of the original Timed CSP
process by studying its untimed counterpart.

 A number of tools for analyzing and understanding systems described using CSP have
been produced.

 Failures/Divergence Refinement 2 (FDR2), which is a commercial model and refinement
checker, converts two CSP process expressions into Labelled Transition Systems (LTSs), and
then determines whether one of the processes is a refinement of the other within some
specified semantic model (traces, failures, or failures/divergence).

CSP, Timed CSP and model checking

1st Italian Workshop on Embedded Systems, 20-09-2016

 Electronic System level (ESL) Design Flow for Embedded Systems
 The main goal is to model F/NF requirements and to validate their satisfaction before final

implementation

 Use system-level models to check HW/SW resources allocation by
simulating system behavior
 Block diagrams, UML, SystemC etc.

 No mature general methodology is available to reduce costs and
complexity of systems realization
 Use of virtualization

 A critical industrial challenge is to integrate multiple applications with
different criticality on a single computing platform
 Mixed-Critical Systems (MCS)

MCS ESL Context

1st Italian Workshop on Embedded Systems, 20-09-2016

Univaq EMC2 - WP2 - T2.4.3

 UNIVAQ-DEWS CONTRIBUTIONS
 Semi-Automatic DSE at the

System-Level of Abstraction
 Extension of an existing HW/SW

Co-Design Methodology for
Parallel Embedded Systems

1st Italian Workshop on Embedded Systems, 20-09-2016

 A System-Level Methodology for HW/SW Co-Design of Parallel Dedicated
Systems
 The proposed methodology starts from a model of the system behaviour, based on a

Concurrent Processes MoC (i.e. a CSP-like), and lead to an parallel dedicated system (on-chip
or on-board) able to satisfy given F/NF requirements. In particular, the goal is to suggest to
designer

o How to partition processes between HW and SW
o Which kind of heterogeneous parallel architecture to use
o How to map processes on processor

 Current NF requirements are related only to timing and some architectural
ones but the methodology can be extended to consider other ones (e.g.
power/energy, reliability, etc.)
 In this project we are considering Mixed-Criticality requirements

Reference Co-Design Flow

1st Italian Workshop on Embedded Systems, 20-09-2016

 Set of models, metrics and tools that drives a designer from specification to
implementation
 The path to be followed is called Co-Design Flow

Reference Co-Design Flow

1st Italian Workshop on Embedded Systems, 20-09-2016

Mixed-Criticality
Requirement

Reference Co-Design Flow - Input

Non Functional
Requirements
(Architectural):
•min/max #
processors and
links instances
•Total area (or
equivalent
metrics
for FPGA)
•Template
architecture

Technologies Library,
characterization of:
• Processors,

Memories, Links

Non Functional
Requirements
(Scheduling):
• Available

scheduling
policies

Non Functional
Requirements
(Timing)
• REAL-TIME

Constraints
(Time-to-
task
completion)

An executable/simulatable
System Behaviour Model
based on a Concurrent Processes MoC

Relevant
Reference Inputs

1st Italian Workshop on Embedded Systems, 20-09-2016

 A heterogeneous parallel dedicated system
 HW/SW partitioning of processes
 HW/SW Architecture
 How many processors, which kind, how to connect them, which scheduling policies on SW ones
 How to map processes on processors

Reference Co-Design Flow - Output

1st Italian Workshop on Embedded Systems, 20-09-2016

 ESL Modelling: The System Behaviour Model (SBM) is based on the Communicating
Sequential Processes MoC (i.e. a CSP-like), that allows modeling system behavior as a
network of processes communicating through unidirectional synchronous (i.e.
rendez-vous based) channels. Three main CSP subsystems:

 Stimulus: single instance process activation
 System: System Behavior Model (SBM)
 Display: output feedback for offline analysis

 SystemC Model: The System Behaviour Model, formed by CSP processes and CSP
channels, is described in SystemC

 The single CSP process is a set of SystemC statements divided into an init and while(1) loop
sections that realize the functional logic.

 CSP channels are modeled by a proper sc_ csp_ channel

 HW/SW Co-Design Flow: SBM, NF constraints, reference input and technologies library,
functional simulation, co-analysis and co-estimation etc…

Proposed Framework (1)

1st Italian Workshop on Embedded Systems, 20-09-2016

 CSP-like notation adopted in the reference HW/SW co-design methodology
doesn’t match very well with the RT world, in term of:
 timing constraints
 relations constraints (e.g. DAG representation of task)
 mutual exclusion constraints on shared resources

CSP for Real-Time Application (1)

1st Italian Workshop on Embedded Systems, 20-09-2016

Proposed Framework (2)
 The idea is to identify in the SBM a set of elements so classified:

 s (statement): statement with C/SystemC data types
 p (process) or J (job): process or job consisting of a set of s divided into two sections (init and

while1) encapsulated in a SystemC SC_THREAD
 t (task): set of potentially competing/cooperating p (with communication rules implemented

through CSP-like SC_CSP_CHANNEL) with a given criticality
 k (component): component (or subsystem) composed of one or more t encapsulated in a

SystemC SC_MODULE with a given criticality
 a (application): application (or system) composed of one or more k (mixed-criticality system)

 With these particular objects it is possible to model CSP/SystemC
representation of system by means of a set of tasks such that:
ti = {Ji,1, Ji,2, … , Ji,n} ≡ {pi,1, pi,2, … , pi,n}, n := number of task instance or processes (jobs)

In this way it is possible to apply classical approaches found in the RT world

1st Italian Workshop on Embedded Systems, 20-09-2016

CSP for Real-Time Application (2)
 Timing constraints

 The real-time parameters can be entered by the designer, and mapped on the CSP-like model

 Relations constraints (e.g. DAG representation of task): In general, the CSP
approach never create DAG. For this, there are two possible solutions:

 put all the s of a loop in a super_s so that the while section of each p becomes a DAG that is
repeated (a) periodically

 force the designer to write p as a DAG (by separating init and while into two p) and work on (a)
periodical sequence of p in t

 Mutual exclusion constraints on shared resources is not yet considered

 Preemption has been introduced by points of preemption included in p, with
a wait in the scheduling policy simulation step and proper interactions with a
scheduler manager

1st Italian Workshop on Embedded Systems, 20-09-2016

Design Space Exploration (1)
 The goal is to extend the existing HW/SW co-design methodology for

parallel embedded systems to consider also mixed-criticality applications.

 In order to support incremental DSE for mixed-criticality, UNIVAQ is
investigating two iterative activities:
 First step: starts from system behaviour and timing constraints, provide a suitable

architecture/mapping item
 Second step: starts from an architecture/mapping item and some mixed-criticality

constraints in order to suggest needed modifications to the HW/SW architecture or to the
mapping

 The final mixed-critical architecture/mapping item is early validated by
means of a system-level HW/SW Timing Co-Simulation.

1st Italian Workshop on Embedded Systems, 20-09-2016

Design Space Exploration (2)

 Main issues:

 Extension of the first-step of the DSE methodology for a better management of timing
requirements in order to consider also classical RT ones

 Analysis of existing HW/SW technologies to support mixed-criticality management (with
focus on hypervisors technologies) to be exploited in the second-step of the DSE methodology

 Extension of the system-level co-simulation approach to consider also two-levels scheduling
policies typically introduced by hypervisors technologies

1st Italian Workshop on Embedded Systems, 20-09-2016

 Criticality: annotation that can be associated to:
 Application (PIM) Components
 Platform Resources
 Extra-Functional Requirements
 Value annotations

 Enables two basic modelling techniques:
 Criticality constraint associated to modelling element
 Criticality associated to value

UML/MARTE profile for MCS

1st Italian Workshop on Embedded Systems, 20-09-2016

CSP MODEL

+

RT and MC Constrains

UML/MARTE

CSP Algebra

COPY(left, right) = left?x -> right

!x -> COPY(left, right)

Timed CSP

(a −→ STOP) || (WAIT 1 ; b → STOP)

Model checker tools

(FDR2)

Possible PhD Work Summary
T

T-1

1st Italian Workshop on Embedded Systems, 20-09-2016

6.
Conclusion and
Future Works

“The fundamental
issue with MCS is

how to reconcile
the differing needs of

separation (for
safety) and sharing

(for efficient resource
usage)”

 This talk presents the MC domain, respect to RT model, criticality and safety
requirements and high system-level design methodologies

 An extended ESL Electronic Design Automation (EDA) methodology (and related tools)
that will help designers to develop Mixed-Criticality Embedded Systems has been
discussed

 After defined a CSP to RT model transformation, the next step is to further enhance the
DSE step to suggest to the designer how to manage different criticality levels of
applications, components, and tasks, by means of relevant available technologies (e.g.
hypervisors, physical partitioning, etc.).

 The final result will be a methodology able to support mixed-criticality systems
developments by suggesting both the platform and mapping solutions for the specific
mixed-criticality application

Conclusions and future work (1)

1st Italian Workshop on Embedded Systems, 20-09-2016

 Work on CSP mathematical model, integrates the Timed CSP in the design model, use
model checking techniques in order to validate the initial functional model and
perform the static analysis of behavior model.

 Integrate the UML/MARTE performance analysis tool developed by University of
Cantabria with CSP Tool in order to validate the estimated analysis and the possible
implementation solutions founds during the DSE and Co-simulation step.

 Offer an integrated tool and framework to manage in the right manner MC application.

 Find a meaningful use cases in order to validate the methodologies, comparing outputs
with commercial and academic research.

Conclusions and future work (2)

1st Italian Workshop on Embedded Systems, 20-09-2016

 Introduce multiple scheduling levels to
simulate Hypervisor behavior

 Model GR-CPCI-LEON4-N2X Quad-Core 32-bit
LEON4 SPARC V8 processor with MMU,
IOMMU

 Model LL3 TASI/UNIVAQ Satellite Application

 Compare mapping between LL3 – UC
Platform Application and WP2 – T2.4.3
HW/SW Co-Design Tool

Further work

1st Italian Workshop on Embedded Systems, 20-09-2016

Reference
[1] A. Esper, G. Nelissen, V. Nélis, E. Tovar: “How realistic is the mixed-criticality real-time system model?” In: Proceedings of the 23rd
International Conference on Real Time and Networks Systems (RTNS '15). ACM, New York, NY, USA, 139-148, 2015.

[2] S. Vestal, "Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance," Real-
Time Systems Symposium (RTSS) 28th IEEE International on, Tucson, AZ, 2007, pp. 239-243.

[3] Burns, A, Davis, R.I.: "Mixed Criticality Systems - A Review“, University of York, 4 March 2016.

[4] F. Santy, G. Raravi, G. Nelissen, V. Nelis, P. Kumar, J. Goossens, and E. Tovar. Two protocols to reduce the criticality level of
multiprocessor mixed-criticality systems. In RTNS 2013, RTNS ’13, pages 183–192. ACM, 2013.

[5] C. A. R. Hoare. “Communicating sequential processes”. Commun. ACM 21, 8 (August 1978), pp. 666-677.

[6] L. Pomante. HW/SW co-design of dedicated heterogeneous parallel systems: an extended design space exploration
approach. IET Computers & Digital Techniques, 2013.

[7] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In Proceedings of the Thirteenth
International Colloquium on Automata, Languages, and Programming (ICALP 86), pages 314–323. Springer LNCS, 1986.

[8] F. Federici, V. Muttillo, L. Pomante, P. Serri, G. Valente,: “A Model-Based ESL HW/SW Co-Design Framework for Mixed-
Criticality System”, CPS Week 2016, EMC² Summit, Vienna, Austria

[9] F. Herrera, H. Posadas, P. Peñil, E. Villar, F. Ferrero, R. Valencia, and G. Palermo. 2014. The COMPLEX methodology for
UML/MARTE Modeling and design space exploration of embedded systems. J. Syst. Archit. 60, 1 (January 2014), 55-78

1st Italian Workshop on Embedded Systems, 20-09-2016

THANKS!

Any questions?

1st Italian Workshop on Embedded Systems, 20-09-2016

