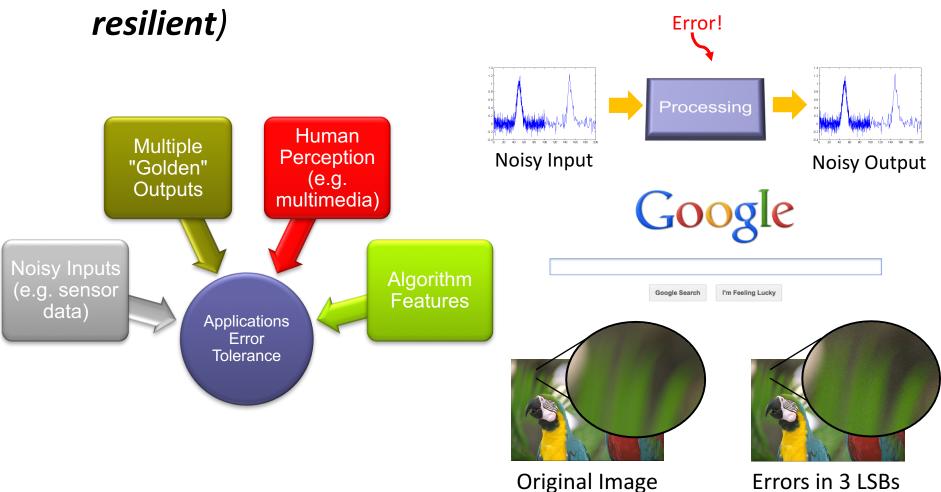
Approximating Computation and Data for Energy Efficiency

Daniele Jahier Pagliari

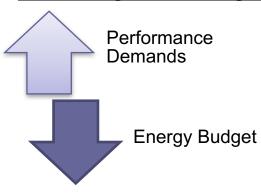
EDA Group Politecnico di Torino Torino, Italy

1st IWES September 20th , 2016, Pisa, Italy

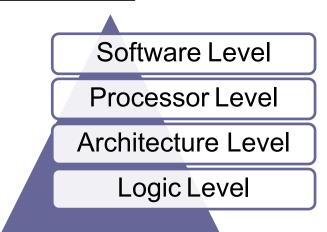

Outline

- Error Tolerance and Approximate Computing
- Our View

- AC in Processing
- AC in Interconnects
- AC in Actuators (OLED Displays)
- Conclusions


Error Tolerance

• Many emerging applications are error tolerant (or resilient)
Error!


Approximate Computing

ESs Design Challenges:

- "Smart" Systems
- Internet of Things
- Battery-operated
- Energy-autonomous

Abstraction Levels:

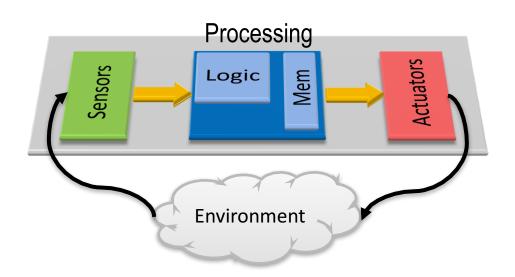
Approximate Computing (AC):

Tradeoff *energy consumption* and *output quality* leveraging applications error tolerance.

Classic AC:

Design-time approximations (fixed error).

Recent Trend:

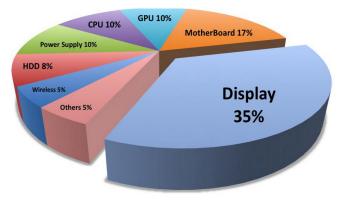

Runtime-reconfigurable error.

Issues:

- What about system-level?.
- What about automation?

Motivation

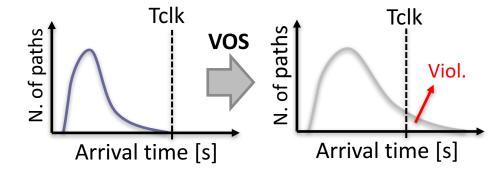
Embedded System:

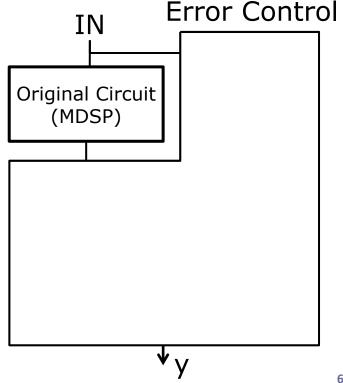

In Summary:

- Sensors, actuators and interconnects are relevant contributors to consumption.
- The breakdown is strongly systemdependent
- Approach: approximation as a systemlevel design knob!

ES Energy Breakdown:

Stanley-Marbell et al. DAC'16




EETimes

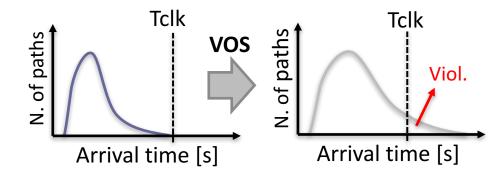
AC in Processing: RPR

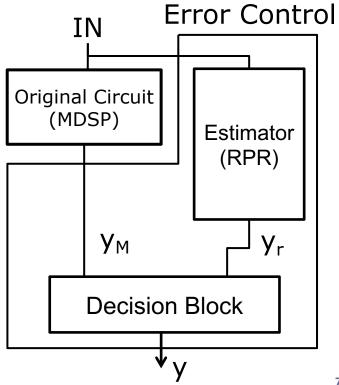
Idea: [Shanbag et al. ISLPED'99]

- Voltage Over-Scaling (VOS) on the original circuit (MDSP)
- **Error Control Block (EC-Block) to** mitigate the effect of timing errors.

AC in Processing: RPR

Idea: [Shanbag et al. ISLPED'99]


- **Voltage Over-Scaling (VOS) on the** original circuit (MDSP)
- **Error Control Block (EC-Block) to** mitigate the effect of timing errors.


EC Block Structure:

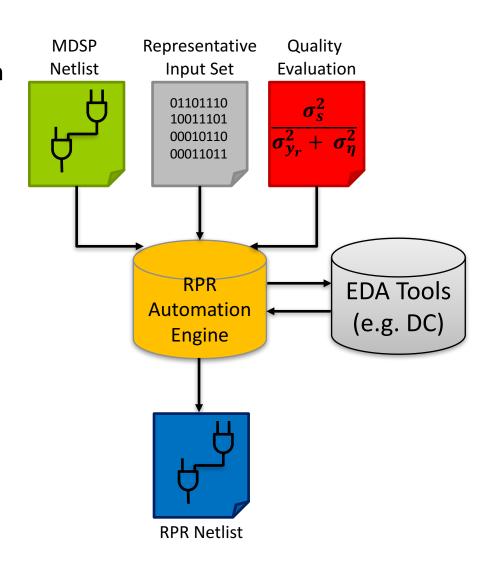
- **Estimator** of the error-free output
- **Decision block** to select between MDSP and Estimator outputs

Estimator Implementation:

Reduced Precision Replica (RPR)

AC in Processing: Our Contribution

Classic RPR has limitations:


- Replica design and error estimation require knowledge of functionality (design specific)
- Uses simplified and unrealistic assumptions (e.g. on input statistics)

Proposed Framework:

 Automatically add RPR to existing gate-level netlist of a datapath circuit.

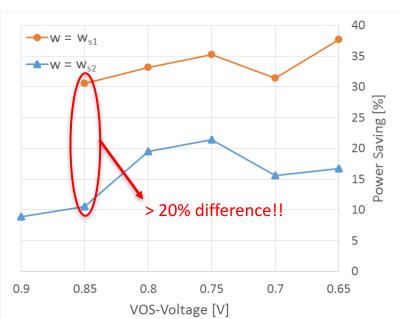
Features:

- Functionality-agnostic.
- Simulation-based.
- Integrated with state-of-the-art tools for synthesis and simulation.

AC in Processing: Results

Setup:

- 45nm library from STM.
- Opencores designs, realistic quality constraints


Generality:

- Successfully applied RPR to previously untested designs (CORDIC, SRU).
- Comparable savings w.r.t. ad-hoc approach on FIR and FFT.

Benchmark	Tot. Power Saving [%]	Area Ovr. [%]
FIR Filter	44.96	82.39
FFT Butterfly	49.66	133.20
RM-CORDIC	42.05	127.64
SRU	47.91	143.32

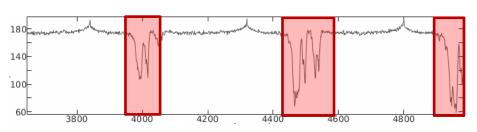
Benefits of simulation-based approach:

- Different input stimuli cause different error rate on the MDSP, at the same V_{VOS}.
- Consequently, a larger/smaller replica can be used to obtain the same quality.
- Strong impact of inputs on the obtainable power savings.

RPR power saving vs voltage for a FIR filter, with gdifferent input stimuli (same quality constraint).

AC in Interconnects: Motivation

Serial buses:


- De-facto standard for interfacing <u>sensors</u>, actuators and I/O controllers
- Higher frequencies, no jitter issue, reduced crosstalk
- Lower costs (less pins and easier wiring)
- SPI, I2C, MIPI, etc.

Motivation:

- PCB traces have large capacitive loads that have not scaled as transistors!
- Transmission of one 12 bit sample ≈ execution of 1 instruction!^{[1][2]}
- Tens of serial connections in a system!

Error Tolerant Bus Traces:

- Sensor ICs/multimedia actuators (audio DAC, displays)
- Long "idle" (roughly constant) phases.
- Short "bursty" (fast and large variations) phases.
- Example: Lena image (red channel)

(Most) information conveyed by the bursty phases!

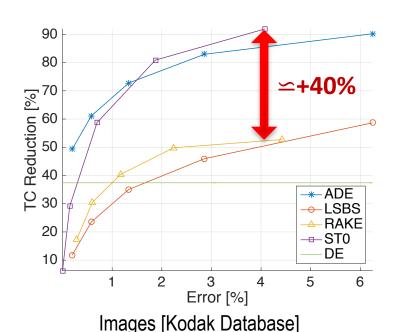
[1] P. Stanley-Marbell and M. Rinard. Value-deviation-bounded serial data encoding for energy-efficient approximate communication. 2015

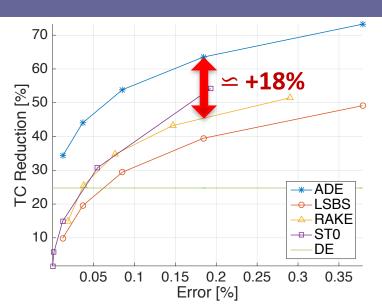
[2] N. Ickes, et al. . A 10-pJ/instruction, 4-MIPS micropower DSP for sensor applications. 2008.

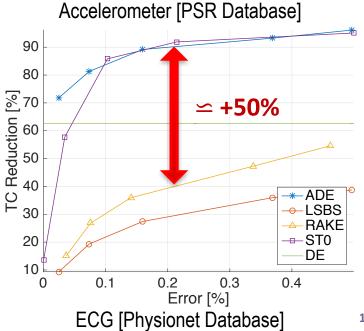
AC in Interconnects: STO/ADE

Two Encodings with common Principles:

- Exploit idle phases for power saving!
- Avoid redundancy (introduces large overheads in serial buses)
- Allow runtime-reconfiguration of accepted error.
- Simple implementation (CODEC HW overheads must not offset gains).
- Serial T0 (ST0):
 - Selectively transmit the correct datum or a special 0-Transitions pattern (interpreted as "repeat previous datum").
 - $|b(t) b(t')| > Th \rightarrow Send correct data$
 - $|b(t) b(t')| \le Th \rightarrow Send 0-T pattern.$
- Approximate Differential Encoding (ADE):
 - Based on bitwise **Differential Encoding (DE)**: $B(t) = b(t) \oplus b(t-1)$
 - Enhanced with LSB-saturation to reduce transitions also during bursty phases

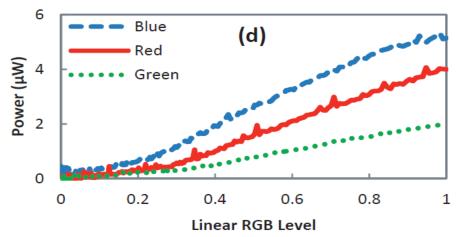

AC in Interconnects: Results


Comparison:


- Rake [Stanley-Marbell, DAC'16]
- LSBS and Accurate DE

Results:

- ADE and STO are both superior to stateof-the-art
- STO better for "strong burstiness", ADE superior for more random data.


AC in Actuators: OLED Displays

OLED Displays:

- Brighter and better viewing angles w.r.t. LCDs
- Thinner and/or flexible panels

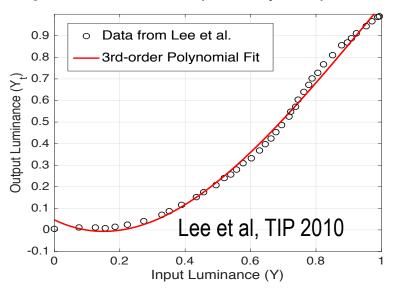
OLEDs are *emissive*:

 Power strongly depends on pixels luminance and (secondarily) color

 Power optimization can be achieved with an image transformation! (≠ LCD)

Motivation:

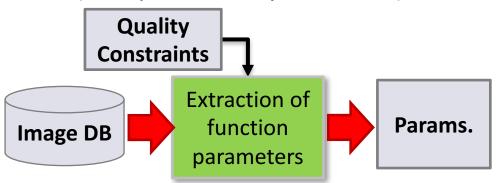
- Transformations for general images must preserve contrast while reducing power consumption.
- Existing solutions are computationally intensive.
 - Power overhead?
 - Realtime applicability?

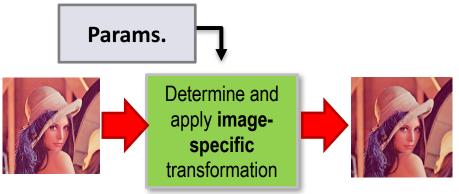

Claim:

 Similar transformations can be obtained by much simpler (approximate) computations.

AC in Actuators: OLED Displays

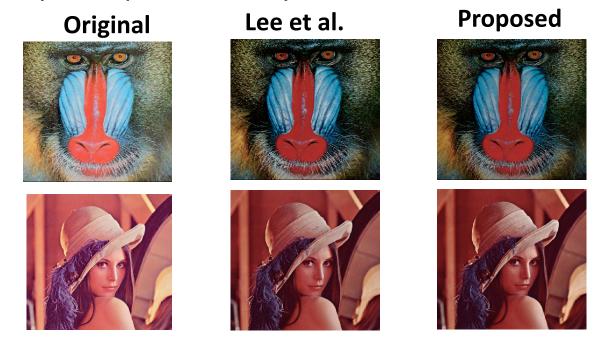
3rd Order Polynomial Fit:


 Transform images according to a 3rd order polynomial function of the input luminance (YUV space)


- Polynomial evaluation vs. histogram processing, etc.
- Simpler and fewer operations (ADD, MULT)

Approach:

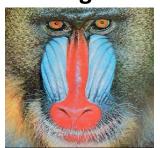
1. Offline Training Phase (Computationally Intensive):



2. Online Transformation (Linear Complexity):

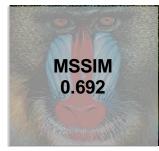
AC in Actuators: Results

- Comparable quality at iso-savings w.r.t. state-of-the-art
 - Visually and quantitatively:

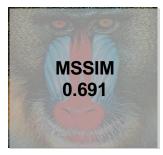


- Much lower complexity! (SW or HW)
 - 10x faster than Lee et al.
 - Minimal power overhead for HW implementation.

AC in Actuators: Results

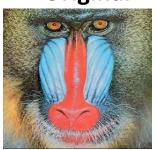

- Comparable quality at iso-savings w.r.t. state-of-the-art
 - Visually and quantitatively:

Original



Lee et al.

Proposed



- Much lower complexity! (SW or HW)
 - 10x faster than Lee et al.
 - Minimal power overhead for HW implementation.

AC in Actuators: Results

- Comparable quality at iso-savings w.r.t. state-of-the-art
 - Visually and quantitatively:


Original

Lee et al.

Proposed

- Much lower complexity! (SW or HW)
 - 10x faster than Lee et al.
 - Minimal power overhead for HW implementation.

Conclusions

- Exploring the energy versus quality tradeoff can be interesting at system level:
 - The computation part is not always the one to blame.
- Automation aspects are key to the widespread diffusion of these design techniques.
- Open Issues/Future Work:
 - AC in memories?
 - AC in sensors (and/or, ADCs)?
 - How to combine AC techniques in different parts of the system to maximize total power savings?
 - (e.g., encoding + RPR)

THANK YOU!