HEPSYCODE

A System-Level Methodology for HW/SW Co-Design of Heterogeneous Parallel Dedicated Systems

L. Pomante

luigi.pomante@univaq.it

Center of Excellence DEWS Università degli Studi dell'Aquila ITALY

1st Italian Workshop on Embedded Systems (IWES 2016)

Overview

- The Proposed Methodology
 - System Behaviour Specification
 - Functional Simulation
 - Co-Analysis & Co-Estimation
 - Technologies Library
 - Co-Analysis
 - Co-Estimation
 - Design Space Exploration
 - HW/SW Partitioning, Mapping and Architecture Definition
 - Timing Co-Simulation
 - Iterations
 - Example
- Main References

- The proposed methodology starts from a model of the system behaviour, based on a Concurrent Processes MoC, and lead to an heterogeneous parallel dedicated system able to satisfy given F/NF requirements
 - In particular, the goal is to suggest to designer
 - How to partition processes between HW and SW
 - Which kind of heterogeneous parallel architecture to use
 - How many processors, which kind, how to connect them
 - How to map processes to processor
 - GPP, ASP, SPP
 - Current NF requirements are mainly architectural and timing constraints but the methodology can be extended
 - e.g. power/energy, reliability, monitorability, mixed-criticality

Reference Co-Design Flow

Reference Co-Design Flow

Inputs

Inputs

- Functional Requirements
 - System Behaviour Model
 - An executable/simulatable model of the system behaviour based on a Concurrent Processes MoC
 - Reference Inputs
 - Relevant inputs data sets

Inputs

- Non–Functional Requirements/Constraints
 - Timing Constraints
 - Time-To-Completion constraint
 - » Actually the only timing one (WIP: real-time constraints)
 - Architectural Constraints
 - Target Form Factor (TFF)
 - » ASIC, FPGA, SOB (PCB), SO(P)C
 - Target Template Architecture (TTA)
 - » min/max # of processors and interconnection links instances
 - » Total available area (or an equivalent metric)
 - Scheduling Directives
 - Available scheduling policies
 - » RR, Priority, HPV, etc...

- Inputs
 - Technologies Library
 - Characterization of the available processors, memories and links
 - Actual attributes are dependent on TFF
 - » ASIC, FPGA, SOB, SO(P)C

Outputs

- Definition of an heterogeneous parallel dedicated system
 - HW/SW partitioning of processes
 - HW/SW Architecture
 - How many processors, which kind, how to connect them, which scheduling policies on SW processors
 - How to map processes to processors

- SBS = {SBM, RI, T}
 - SBM = {PS, CH}: Concurrent Processes MoC → CSP-based
 - A MoC that explicitly defines also a model of communication
 - Unidirectional point-to-point blocking channels for data exchange
 - Such a MoC is well suited to describe system-level behaviour since it is unifying for HW and SW and it enables the "processes to processors" mapping
 - Languages suitable to describe CSP
 - » SystemC, OCCAM, Handel-C, ADA
 - More abstract languages
 - » UML, SysML, Simulink

- *SBS* = {*SBM*, *RI*, *T*}
 - RI: a set of inputs (possibly timed), representative AMAP of typical operating conditions of the system and related expected outputs
 - To be used for analysis and validation
 - T: time-to-completion timing constraint
 - To be satisfied by each RI

- Reference Example
 - RI
 - T: 1000 ms

- Reference Example
 - PS and CH

Functional Simulation

Functional Simulation

Functional Simulation

- This step allows to "validate" the SBM by means of a functional simulation
 - Such a simulation allows to take into account timed inputs (i.e. there is a concept of simulated time), but it doesn't consider the time that will be needed to execute the statements composing the processes and for the communications
 - Currently based on standard SystemC kernel
 - If SBM is not correct (i.e. wrong outputs or critical conditions such as e.g. deadlocks) SBM should be properly modified and simulated again

- This step is composed of two independent activities
 - Co-Analysis
 - Static and Dynamic
 - Co-Estimation
 - Static and Dynamic
- Both are based on a given Technologies Library

Co-Analysis & Co-Estimation Technologies Library

Technologies Library

- TL contains the characterization of available processors, interconnection links and memories
 - It is used to perform analysis and estimations and, later, to build the final architecture during the DSE step
 - However, there is the need for different TLs depending on TFF
 - The main differences are related to the different attributes (or different meaning of the same attribute)
 - In general

```
TL = {PC, IL, M}
PC: {pc<sub>1</sub>, ..., pc<sub>n</sub>}
» Set of processors
IL: {il<sub>1</sub>, ..., il<sub>n</sub>}
» Set of interconnection links
M: {m<sub>1</sub>,...m<sub>n</sub>}
» Set of memories
```


- Co-Analysis
 - This activity performs the evaluation of two kinds of metrics
 - Static analysis
 - Affinity
 - Dynamic analysis
 - Concurrency

- Co-Estimation
 - This activity performs two kinds of dependent estimations
 - Static estimations
 - Timing
 - Size
 - Dynamic estimations
 - Load
 - Bandwidth

- This step is composed of two iterative activities
 - HW/SW Partitioning, Mapping and Architecture Definition
 - Timing Co-Simulation
 - The final goal is the automatic identification of
 - an HW/SW partitioning of the processes in PS
 - an heterogeneous parallel architecture composed of several connected processors with local memory (i.e. blocks) composed starting form the TL and able to satisfy the architectural constraints
 - a mapping of the partitioned processes to the blocks able to satisfy the timing constraint

Design Space Exploration

HW/SW Partitioning, Mapping and Architecture Definition

HW/SW Partitioning, Mapping and Architecture Definition

- HW/SW Partitioning, Mapping and Architecture Definition
 - Main inputs
 - Annotated SBM
 - SBM + Process-level metrics/estimations
 - Technology Library
 - Architectural Constraints
 - To limit cost, to ensure feasibility, or to model an existing platform

- HW/SW Partitioning, Mapping and Architecture Definition
 - 2 Phases Approach

- HW/SW Partitioning, Mapping and Architecture Definition
 - Main Outputs
 - Heterogeneous Parallel Dedicated Systems (HPDS)
 - A set of blocks connected by means of a set of links
 - » Architecture Graph
 - Mapping between SBM and blocks/links

Design Space Exploration
Timing Co-Simulation

Timing Co-Simulation

- Timing Co-Simulation
 - The timing co-simulation activity considers the suggested HPDS (i.e. architecture and mapping) and all the relevant info previously collected to check if T is going to be satisfied
 - Scheduling Directives
 - Additionally, the designer can select a scheduling policy to be used
 » e.g. round-robin, priority-based (if any), etc.
 - Currently based on standard SystemC kernel integrated with specific extensions

Design Space Exploration

Iterations

Iterations

- If the proposed mapping/architecture doesn't satisfy T, the designer have to perform again the design space exploration
 - by changing scheduling directives
 - by changing some parameters in DSE heuristics
 - by changing architectural constraints
- If no solutions are still found the designer have to perform other changes in the previous steps
 - by modifying the SBM
 - in order to apply semantically equivalent transformations to better show relevant features (e.g. concurrency or affinity) that the methodology could exploit
 - by modifying elements in TL or by relaxing T
 - This means that T is not feasible with the selected technologies!

Design Space Exploration

Example

Example

Main References

Main References

- L. Pomante, D. Sciuto, F. Salice, W. Fornaciari, C. Brandolese.
 "Affinity-Driven System Design Exploration for Heterogeneous Multiprocessor SoC", IEEE Transactions on Computers, vol. 55, no. 5, May 2006.
- L. Pomante, "System-Level Design Space Exploration for Dedicated Heterogeneous Multi-Processor Systems". IEEE International Conference on Application-specific Systems, Architectures and Processors, 2011.
- L. Pomante, "HW/SW Co-Design of Dedicated Heterogeneous Parallel Systems: an Extended Design Space Exploration Approach". *IET Computers & Digital Techniques*, Institution of Engineering and Technology, 2013, Vol. 7, Iss. 6, pp. 246–254.
- L. Pomante. "Electronic System-Level HW/SW Co-Design of Heterogeneous Multi-Processor Embedded Systems", *The River Publishers Series in Circuits and Systems*, 2016.