Behind the Device: Where your power goes in IoT devices before you burn it

Prof. Massimo Poncino

Politecnico di Torino

Overview

- What's "behind" your IoT device?
- Optimizing energy usage "behind the device"
 Generation
 - Conversion and distribution
 - Storage

• But there is much more around

• But there is much more around

Consuming energy?

- Digital and non-digital functional parts (MCU, accelerators, memories, RF, I/Fs) are assumed to be power-optimized
 - Designer picks components, protocols, etc. based on needs and based on their power scores
 - Functionality (@ low power) as commodity!
- ... But most of the energy is likely to lost elsewhere (and not in the loads)

Some figures from an example device

- SleepWalker node from IMEC
 - Actually a ULP $\mu controller$ (7uW/MHz) including a DC/DC converter
- DC/DC losses take from about 12% to 40%
 - Small but even more significant in sleep state...
 - And this is just one converter...

Managing energy

- In an autonomous system power is
 - Generated through various types of energy harvesters (*power sources*)
 - **Distributed/converted** to the various units
 - Stored in appropriate energy storage devices (ESDs) to guarantee sustained service
- We will overview the main sources of energy inefficiencies in these three phases

Power sources: background and power issues

Energy harvesting

- = extracting energy from the environment
- We need electrical energy, so any harvester embeds some kind of transducer
- A large variety of physical effects can be exploited
 Piezo*electric*, photo*electric*, tribo*electric*, thermo*electric*,...
- As users, we are more interested in the "sources" from which we can extract energy...
 - (solar) radiation
 - Vibration
 - temperature
 - friction
 - Ambient radio frequency/noise
 - Ambient airflow

Issues with energy harvesting (1)

1. Generated power depends on the value of a specific environmental quantity

How do we guarantee as much extracted power as possible under different environmental conditions?

The "maximum power extraction" problem

Issues with energy harvesting (2)

2. Extracted power is almost invariably very low...

Harvesting method	Power density
Solar cells (outdoor at noon)	15 mW/cm ²
Solar cells (illuminated office)	100 µW/cm²
Piezoelectric (shoe inserts)	330 µW/cm ³
Thermoelectric (10 °C gradient)	40 μW/cm ³
Acoustic noise (100 dB)	1 µW/cm³

A typical battery cell has 100s-1000s mW/cm³ !!!

Issues with energy harvesting (2)

2. Extracted power is almost invariably very low...

How can we derive acceptable power levels for typical computing blocks?

Power conversion

Scavenger "packing"

Issues with energy harvesting (3)

3. Extracted power might not be needed "right now"

How can we accumulate excess energy?

Energy storage design and optimization

Extracting Maximum Power

Extracting power

- Almost invariably output voltage (e.g., battery,load) is not the ideal value for harvesting the available energy!
- Harvester has low efficiency if storage device is not impedance-matched to source !!!
 - Source impedance is variable
 - Maximum power point tracking (MPPT) problem
- Need proper circuits
 - Tradeoff between energy extracted and consumed by MPPT circuit

Impedance matching and maximum power: recap

- Maximum power theorem:
 - Power transferred to the load is maximum when output and load resistance are the same (R_{in}=R_{out})

MPP(T): an example

Tracking the MPP

- Done by ad-hoc HW call MPP tracker (MPPT)
- Basically a switching DC-DC converter that tries to match R_{in} and R_{out} by adapting the working point
 - Double source of inefficiency !
 - **1. Converter efficiency...**
 - 2. Failure to perfectly track MPPT
 - Plus, some power overhead

Extracting Low Power Levels

Extracting from Ultra-Low Power sources

- "Low-power" here not a value !!!
- Example:
 - TEG device Micropelt MPG-D751

- MPPT for ΔT =5°C is only 50 uW!!! (@0.25V!)

Extracting from Ultra-Low Power sources

- How to make such a low power level usable for a typical load (e.g., 10mA @ 1V = 1mW?)
- 1. Use appropriate converters
 - Will discuss later
- 2. If possible, combine power sources into "modules"
 - scale up both voltage and curretn
 - Series connection
 increase voltage
 - Parallel connection
 increase current

"Packing" power sources: constraints

- Obviously, space constraints should allow
- Issues with unmatched devices !!!!
 - i.e., exposed to different environmental conditions
 - Example:

Conversion Issues

Why conversion?

- a.k.a. Voltage regulators
 - The equivalent of transformers in DC!
- **INPUT** : an unregulated DC voltage V_g.
- OUTPUT: a regulated output voltage V, having a magnitude (and possibly polarity) that differs from V_g
- Why do we need to care?
 - Plenty of voltage domains and supplies with disparate values

Characterization: power loss and efficiency

- The conversion process is not "perfect"
- Efficiency = output power/input power

$$\eta = \frac{P_{out}}{P_{in}} = \frac{P_{in} - P_{losses}}{P_{in}} = 1 - \frac{P_{losses}}{P_{in}}$$

$$-P_{\rm in} = V_{\rm in} I_{\rm in} -P_{\rm out} = V_{\rm out} I_{\rm out}$$

Bad news

- Efficiency is not constant
 - Affected by various involved quantities
- Efficiency can be quite low
 - If used in the "wrong" working point

Converter efficiency

- Factors affecting efficiency depends on the converter type
 - Distance between V_{in} and V_{out} (0 is best)
 - V_{out}>V_{in} less efficient than for V_{in}>V_{out}
 - Absolute values of V_{in} and V_{out}
 - Output current (smaller is worse!!!)
- Example:

For switching

converters

An example

• Assume efficiency proportional to ΔV , e.g.,

$$\eta = 1 - (V_{in} - V_{out})/V_{in}$$

$$- V_{in} = 1.5V - V_{out} (=V_{dd}) = 1.1V - \eta = 73.3\%$$

• By DVS, we lover V_{dd} to 0.9V - $\eta = 60.0\%$

Did we really save power?

Converter efficiency - Insights

- Efficiency can quite far from 100%
 - You might waste most of your power in the conversion...!
- Low output currents are bad for conversion
 - Especially for inductor-based switching converters
 - ... and this is exactly what you are pursuing in low-power design!!!
- You typically have multiple converters
 - …Each one with losses

Energy storage: background and issues

Energy Storage Devices

- Two main functions
 - Buffering: Accumulate harvested energy to smooth the variations
 - Power supply: Power the system (especially if not energy autonomous)
- General view: ESD = battery
 - But they are just one possible choice
 - Many possible alternatives (even at µscale)...
 - Ultra-capacitors
 - Fuel cells
 - Flywheels
 - .

Batteries are not ideal... (1)

• Rated-capacity effect

 The amount of energy a battery can provide depends on the current drawn from the battery itself

Batteries are not ideal... (2)

Minimum avg. current ≠ max battery lifetime!

Main impact of non-idealities

- Current magnitude impacts battery efficiency
 - Whenever possible use a smaller current
 - Consistent with "low-power design"!
- Large current variations impact battery efficiency
 - Smooth current profile as much as possible (filter?)
 - Average current (power) is not a reliable metric for battery!
 - Relation with "low-power design"?
 - Duty cycling vs. speed scaling...
- Idle times can increase battery efficiency
 - Contrast with smoothing of current variations...?

Concluding...

Conclusions

- Killing the microWatt in the computational part can be useless
- Much more energy is wasted while powering your device...
 - $-\eta_{\text{MPPT}}$ for each scavenger

Losses, losses, losses,....

