
Behind the Device: 

Where your power goes in IoT

devices before you burn it

IWES 2016

devices before you burn it

Prof. Massimo Poncino

Politecnico di Torino

1



OverviewOverview

• What’s “behind” your IoT device?

• Optimizing energy usage “behind the device”

– Generation
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– Generation

– Conversion and distribution

– Storage
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An abstract view of an IoT deviceAn abstract view of an IoT device
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Functionality flow

Energy-efficient strategies

work here: the “hardware”
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Consuming energy?Consuming energy?

• Digital and non-digital functional parts 
(MCU, accelerators, memories, RF, I/Fs) are 
assumed to be power-optimized
– Designer picks components, protocols, etc. based on needs 

and based on their  power scores

– Functionality (@ low power) as commodity!
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– Functionality (@ low power) as commodity!

• … But most of the energy is likely to  lost 
elsewhere (and not in the loads)
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Some figures from an example deviceSome figures from an example device

• SleepWalker node from IMEC
– Actually a ULP µcontroller (7uW/MHz) including a DC/DC 

converter 

• DC/DC losses take from about 12% to 40%
– Small but even more significant in sleep state…

– And this is just one converter…
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– And this is just one converter…
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Managing energyManaging energy

• In an autonomous system power is 

– Generated through various types of 
energy harvesters   (power sources)

– Distributed/converted to the various units

– Stored in appropriate energy storage devices 
(ESDs) to guarantee sustained service
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(ESDs) to guarantee sustained service

• We will overview the main sources of
energy inefficiencies in these three phases
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Power sources: 

background and power issues
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Energy harvestingEnergy harvesting

• = extracting energy from the environment 

• We need electrical energy, so any harvester embeds 
some kind of transducer

• A large variety of physical effects can be exploited
– Piezoelectric, photoelectric,triboelectric, thermoelectric,...

• As users, we are more interested in the “sources” 
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• As users, we are more interested in the “sources” 
from which we can extract energy…
– (solar) radiation

– Vibration

– temperature

– friction

– Ambient radio frequency/noise

– Ambient airflow
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1. Generated power depends on the value of a 
specific environmental quantity

Issues with energy harvesting (1)Issues with energy harvesting (1)

How do we guarantee as much 

extracted power as possible under 
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extracted power as possible under 

different  environmental conditions?

The “maximum power extraction” 

problem



2. Extracted power is almost invariably 
very low…

Harvesting method Power density

Solar cells (outdoor at noon) 15 mW/cm2

Solar cells (illuminated office) 100 µW/cm2

Issues with energy harvesting (2)Issues with energy harvesting (2)
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Solar cells (illuminated office) 100 µW/cm2

Piezoelectric (shoe inserts) 330 µW/cm3

Thermoelectric (10 °C gradient) 40 µW/cm3

Acoustic noise (100 dB) 1 µW/cm3

A typical battery cell  has 100s-1000s mW/cm3 !!!



2. Extracted power is almost  invariably 
very low…

Issues with energy harvesting (2)Issues with energy harvesting (2)

How can we derive acceptable power 

levels for typical computing blocks?
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Power conversion

Scavenger “packing”



3. Extracted power might not be needed 
“right now”

Issues with energy harvesting (3)Issues with energy harvesting (3)

How can we accumulate excess energy?
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Energy storage design and optimization



Extracting Maximum Power
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Extracting powerExtracting power

• Almost invariably output voltage (e.g., battery,load) 
is not the ideal value for harvesting the available 
energy!

• Harvester has low efficiency if storage device is not 
impedance-matched to source !!!
– Source impedance is variable 
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– Source impedance is variable 

– Maximum power point tracking (MPPT) problem

• Need proper circuits
– Tradeoff between energy extracted and consumed 

by MPPT circuit
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Impedance matching and 
maximum power: recap

Impedance matching and 
maximum power: recap

• Maximum power theorem:
– Power transferred to the load is maximum when output 

and load resistance are the same (Rin=Rout)

+

Rout

R

IL

Courtesy:

VD Agrawal
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– Power transferred 
only 50% (efficiency)

18

Vs

+
_ VL

Rin VD Agrawal

1.0

0.8

0.6

0.4

0.2

0.0

E
ff

ic
ie

n
cy

P
o

w
e

r

0         1         2         3         4         5         6         7         8

Rin/Rout

Efficiency

PL = Vs
2/(4Rin)

Maximum power

1/(1+Rin/Rout)



• Power source: solar PV microcell 

MPP(T): an exampleMPP(T): an example

MPP

[Raghunathan 2013]
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Tracking the MPPTracking the MPP

• Done by ad-hoc HW call MPP tracker (MPPT)

• Basically a switching DC-DC converter that tries to 

match Rin and Rout by adapting the working point

– Double source of inefficiency !

1. Converter efficiency…
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1. Converter efficiency…

2. Failure to perfectly track MPPT

– Plus, some power overhead
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Extracting Low Power Levels
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Extracting from Ultra-Low Power sourcesExtracting from Ultra-Low Power sources

• “Low-power” here not a value !!!

• Example:
– TEG device Micropelt MPG-D751
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– MPPT for ∆T=5oC is only 50 uW!!! (@0.25V!)
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Extracting from Ultra-Low Power sourcesExtracting from Ultra-Low Power sources

• How to make such a low power level usable for a 
typical load (e.g., 10mA @ 1V = 1mW?)

1. Use appropriate converters
– Will discuss later

2. If possible, combine power sources into “modules”
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2. If possible, combine power sources into “modules”
– scale up both voltage  and curretn

• Series connection � increase voltage

• Parallel connection � increase current
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“Packing” power sources: constraints“Packing” power sources: constraints

• Obviously, space constraints should allow

• Issues with unmatched devices !!!!
– i.e., exposed to different  environmental conditions

– Example:
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Conversion Issues
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Why conversion?Why conversion?

• a.k.a. Voltage regulators
– The equivalent of transformers in DC!

• INPUT : an unregulated DC voltage Vg. 

• OUTPUT: a regulated output voltage V, having a 
magnitude (and possibly polarity) that differs from Vg
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• Why do we need to care?
– Plenty of voltage domains

and supplies with disparate
values
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Characterization:  power loss 

and efficiency

Characterization:  power loss 

and efficiency

• The conversion process is not “perfect”
• Efficiency = output power/input power

– P = V I

in

losses
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– P
in 

= V
in
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in
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out
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out

• Bad news
– Efficiency is not constant

• Affected by various involved quantities 

– Efficiency can be quite low
• If used in the “wrong” working point
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Converter efficiencyConverter efficiency

• Factors affecting efficiency depends on the converter 
type
– Distance between Vin and Vout (0 is best)

• Vout>Vin less efficient than for Vin>Vout

– Absolute values of Vin and Vout

– Output current (smaller is worse!!!)

For switching

converters
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– Output current (smaller is worse!!!)

• Example:
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An exampleAn example

• Assume efficiency  proportional to ∆V, e.g.,

η = 1 – (Vin-Vout)/Vin

– Vin = 1.5V

– Vout (=Vdd) = 1.1V

– η = 73.3%
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• By DVS, we lover Vdd to 0.9V
– η = 60.0%

Did we really save power?
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Converter efficiency - InsightsConverter efficiency - Insights

• Efficiency can quite far from 100%
– You might waste most of your power in the conversion…!

• Low output currents are bad for conversion
– Especially for inductor-based switching converters

– … and this is exactly what you are pursuing in low-power 
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– … and this is exactly what you are pursuing in low-power 
design!!!

• You typically have multiple 
converters
– …Each one with losses
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Energy storage:

background and 
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background and 

issues



Energy Storage DevicesEnergy Storage Devices

• Two main functions
– Buffering: Accumulate harvested energy to smooth the 

variations 

– Power supply: Power the system 
(especially if not energy autonomous)

• General view: ESD = battery
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• General view: ESD = battery
– But they are just one possible choice

– Many possible alternatives (even at µscale)…
• Ultra-capacitors

• Fuel cells

• Flywheels

• …
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Batteries  are not ideal… (1)Batteries  are not ideal… (1)

• Rated-capacity effect
– The amount of energy a battery can provide depends on 

the current drawn from the battery itself
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Can’t do much about this….



Batteries  are not ideal… (2)Batteries  are not ideal… (2)

• Dependence on current dynamics
– For a given average current, the constant profile is the 

one the battery can serve the best

But we can do something
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But we can do something

about this….



Minimum	avg.	current		≠		max	battery	

lifetime!

Minimum	avg.	current		≠		max	battery	

lifetime!

Profile A Profile B

Average Current
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[Source: Intel]



Main impact of non-idealitiesMain impact of non-idealities

• Current magnitude impacts battery efficiency
– Whenever possible use a smaller current

– Consistent with “low-power design”!

• Large current variations impact battery efficiency
– Smooth current profile as much as possible (filter?)
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– Smooth current profile as much as possible (filter?)

– Average current (power) is not a reliable metric for 
battery!

– Relation with “low-power design”?
• Duty cycling vs. speed scaling…

• Idle times can increase battery efficiency
– Contrast with smoothing of current variations…?
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Concluding…
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ConclusionsConclusions

• Killing the microWatt in the computational part can be useless

• Much more energy is wasted while powering your device…

– ηMPPT for each scavenger

– ηConv for each converter

– ηBatt for bad usage of battery energyLosses, losses, losses,….
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