Virtual Machine Monitors

Luca Abeni
luca.abeni@santannapisa.it

April 6, 2018

Virtual Machines

e Virtual Machine: efficient, isolated duplicate of a
physical machine

e Execution environment essentially identical to the
physical machine
Programs only see a small decrease in speed
A “monitor” or “hypervisor” is in full control of
physical resources

e Programs running in a VM should not see
differences respect to real hw
Virtualization should be efficient
Programs should not be able to access resources
outside of the VM

Advanced Operating Systems Virtual Machine Monitors

VMs and OSs

e How is an OS related to Virtual Machines?

e The OS should provide support for the Virtual
Machine Monitor / hypervisor
e The OS could be optimized to run inside a VM

e OS suport for virtualization (as host or as guest)

e Impact on resource management
e Impact on the exposed features
e Impact on the I/O devices support

e Impact on the OS architecture?

e Host: type-I| hypervisors, pi-kernel systems
e (Guest: library OSs, unikernels, vertically
structured OSs

Advanced Operating Systems Virtual Machine Monitors

CPU Virtualization

e Firstidea: simulate the CPU hw in software

e Software implementation of an abstract machine
Implementing the fetch-decode-execute-(write)
cycle

e Fails the efficency requirement!!!

e Other idea: directly execute the virtualized
Instructions on the CPU

Virtual ISA: exact copy of the host ISA
Might fail the third (VMM is in control)
requirement

e Limited to unprivileged instructions (with VMM
executing at a high privilege level)

e What to do for privileged instructions?

Advanced Operating Systems Virtual Machine Monitors

Virtualizable CPU Architectures

e The monitor should be able to “intercept” some
machine instructions

e Some kind of trap / exception / software interrupt
must be generated
e Not always possible (think about x86 ring 0)

e The CPU must provide some support for full
virtualization

“More than supervisor” mode — hypervisor mode

e Introduce two operating modes: “root mode” and
“non-root mode”; non-root mode can only modify
a shadow copy of the CPU privileged state

Advanced Operating Systems Virtual Machine Monitors

OSs for Virtualizable Architectures

e Virtualizable ISA: how to use it?

e VMM or hypervisor responsible for managing
VMs and other resources
e Re-invent an OS, or using an existing one?

e OS support for hypervisors

e Hosted hypervisor
e DomO
®

e Difference between a hypervisor and a u-kernel???
e Are we reinventing an old idea?

Advanced Operating Systems Virtual Machine Monitors

ParaVirtualization

e S0, CPU virtualization can be easy and efficient

e Provided that the ISA is virtualizable
e Provided hos OS support / hypervisor

e What about I/O devices?

e Virtualizing real hardware can be complex and
inefficient

e |dea: device passthrough

e Other possibility: paravirtulization

e Paravirtualization: the guest knows that it is running
ina VM

e Memory buffers can be (securely) shared

between guest and host

® s
Advanced Operating Systems Virtual Machine Monitors

Example of (Toy) CPU

Control Registers
Unit B ALU

PC, IR,...

AR DR

Bus

e Toy CPU: just an example with many simplifications
Modern (real) CPUs are much more complex!

Pipeline

Parallel execution

Advanced Operating Systems Virtual Machine Monitors

CPUs, Programs, & Friends

e CPU — executes programs

e Stored in main memory
e Use data from main memory

e Program: formal description of an algorithm
e Using a programming language
e Sequence of machine instructions

e Actions having effects on some objects
e “Object”. data stored in main memory

e Instance of program in execution: sequence of
actions on objects

e Example: int mcd(int a, int b) andits
execution

Advanced Operating Systems Virtual Machine Monitors

Executing a Program

Fetch

Decode

Load Data

Execute

LEER

Save Data

Advanced Operating Systems

CPU: cyclical execution (fetch /
decode / load / execute / save)

e Machine instructions are exe-
cuted (mainly) sequentially

Machine designed to execute its
own language!

e Machine Language

Virtual Machine Monitors

Physical Machines...

e (Computer: (physical) machine designed to execute
programs

e Every machine executes programs written in its own
language

e Relationship between machine ana

e A machine has its own language (the language it
can parse and execute)

e A language can be “understood” (parsed anad
executed) by multiple different machines

e Program execution: (infinite) cycle
fetch/decode/load/execute/save

e CPU: hw implementation of this cycle

Advanced Operating Systems Virtual Machine Monitors

...And Abstract Machines!

e The fetch/decode/load/execute/save cycle can be
iImplemented in hw or in sw...
e Software Implementation: Abstract Machine

e Algoritmhms and data structures used to store
and execute programs

e Once upon a time referred as “Virtual Machine’

e Today, the term “Virtual Machine” (VM) is used
with a slightly different meaning

Advanced Operating Systems Virtual Machine Monitors

Abstract Machines and Languages

e Similarly to physical machines (CPUs), each
abstract machine has its own machine language

e Machine language for a CPU: sequence of 0/ 1

e Assembly makes it more readable

e Abstract machines generally have higher level

machine languages (C, Java, etc...)

e M. abstract machine understanding language £

e L isthe machine language of M/,

e Program: sequence of instructions written in £

e M/, isjust a possibile way to describe L

Advanced Operating Systems

Virtual Machine Monitors

Abstract Machines Behaviour

e [0 execute a program written in £, M, has to:
1. Execute some “elementary operations”
e Inhw, ALU
2. Manage the execution flow

e Execution is not only sequential (jumps,
loops, etc...)
e In hw, PC handling

3. Move data from / to memory
e Addressing modes, ...
4. Take care of memory management

e Dynamic allocation, stack management,
etc...

Advanced Operating Systems Virtual Machine Monitors

Abstract Machine Example

=
=
=

Fetch

e [Execution cycle: very
similar to a CPU...

e ... But it is imple-
mented in software!

Decode

Load Data

!

¢
Opl| {(Op2 oooooo
|
| s
Save Data @

B

@D

Advanced Operating Systems Virtual Machine Monitors

Implementing a Language

e M, undestands its machine language L

e One single machine language per abstract
machine

e L can be executed by multiple different abstract
machines

e Might differ in implementation, data structures, ...

e Implementation of language £: abstract machine
M that understands programs written in language
L

e Implementation in hw, sw, firmware, ...

Advanced Operating Systems Virtual Machine Monitors

Software Implementation

M In software (can execute programs written in £)
Executes on a Host Machine Mo,, (having machine
language Lo)

e [wo possible implementations: interpreter or
compiler

e |Interpreter: program written in Lo that
understands and executes L

e Implements the fetch/decode/load/exec/save
cycle

e Compiler: program translating other programs
from £ to Lo

Advanced Operating Systems Virtual Machine Monitors

Pure Interpreters

[Program w [L interpreterw . Output i

written in L j writtenin Loj | Data

‘ Execution

Host Machine
Mo

e Interpreter: program written in Lo (executes on
Mo,,) understanding programs written in £
e T[ranslates Lo in £ “instruction by instruction”

Advanced Operating Systems Virtual Machine Monitors

Pure Compilers

Program Compiler Program _ Output
writtenin L from L into Lo writtenin Lo ' Data |

| Execution | Execution
Abstract Machine Host Machine
Ma Mo

e [ranslates the whole program from L to Lo before
executing it

e [ranslation performed by a dedicated program, the
Compiler

Compiler: not necessarely written in Lo
e (Can execute on an abstract machine Ma
different from Mo,

Advanced Operating Systems Virtual Machine Monitors

Hybrid Implementation

Program Compiler Program
writtenin L from L into Li written in Li

| Execution | Execution
Abstract Machine Host Machine
Ma Mo

Not a pure compiler nor a pure interpreter
e (Compller translate in an intermediate language L
Interpreter executes on Mo, programs written in L:

Java: compiler — bytecode, then JVM
e (C:compiler generally produces code that needs
SO and runtime to execute

Advanced Operating Systems Virtual Machine Monitors

CPU Emulators

e CPU Emulator: software implementation of the
fetch/decode/load/exec/save cycle

e (Can be an interpreter, some sort of compiler, or a
hybrid implementation

e Different complexity / performance / flexibility
trade-offs depending on the implementation
strategy

e Performance penalty respect to direct execution on
the emulated CPU

e Allows to emulate target CPU architectures different
from the host CPU architecture

L and Lo can be different
No constraints on the emulated or host ISA

Advanced Operating Systems Virtual Machine Monitors

Interpreting CPU Instructions

e Simplest CPU emulator: software cycle interpreting
CPU instructions

e Read CPU instructions one by one < according
to the syntax defined in ISA manuals

e Machine language instructions can have fixed
size (RISC) or variable size (x886, ...)

e Decode and execute (eventually loading or
saving data) modifying the emulator’s state

e (Can be easily implemented reading the CPU
documentation
e Example: Bochs (http://bochs.sf.net)

Advanced Operating Systems Virtual Machine Monitors

http://bochs.sf.net

Compiling Blocks of CPU Instructions

Compiler-based approach: just-in-time translation of
CPU instructions from £ to Lo

e More complex than a CPU interpreter, but can
provide better performance

e Example: loop translated 1 time and then execute
multiple times at near-native speed

Additional issues with self-modifying code and
similar...
Example: gemu

e Contains a “Tiny Code Generator” (TCG) — sort
of simple compiler

Advanced Operating Systems Virtual Machine Monitors

Qemu TCG

e Compile a “Translation Block” (TB) when needed,
and then execute compiled instructions

e Different “backends” for each supported host
architecture (host language Lo)

e (Convert machine instructions of £ into “TCG
instructions”

e Different “frontends” for each supported target
(language £)

e Convert TCG instructions into machine
instructions of Lo

e Issues: identify TBs, invalidate them when needed,
etc...

Advanced Operating Systems Virtual Machine Monitors

CPU Virtualization

e Instead of emulating a CPU implementing M/ Iin
software, execute target instructions in the host

e This implies £ == Lo!!l

e How can the monitor be in control of physical
resources?

If the guest has control of the virtual machine...
...It risks to have full control of the physical
machine too!!!

e Only some of the guest instructions can be directly
executed on the host CPU

e Which ones”? User application (low privilege
level) for sure...

Advanced Operating Systems Virtual Machine Monitors

The Monitor / Hypervisor

e The Virtual Machine Monitor (VMM) must be In
control of physical resources (requirement 3)

e It manages Virtual Machines like an OS kernel
manages processes

e Virtual Machine: contains user code
(unprivileged instructions) and (guest) OS kernel

e OS Kernel: runs in supervisor mode — supervisor
for user code (user processes)

e VMM: supervises both user code and OS kernels —
supervisor of supervisors = Hypervisor!!!

How does it work?
Mechanisms to control the execution of OS
kernel code (privileged instruuctions)?

Advanced Operating Systems Virtual Machine Monitors

Direct Execution of Untrusted Guest Code

e Some instructions cannot be executed

Which ones? We need a formal definition...
When the guest tries to execute these
instructions, the hypervisor / VMM must intercept
them

e OS Kkernels have similar issues

e When user code tries to execute a privileged
Instruction, an exception fires — the kernel
handles it

e Simple concept: user code cannot execute
privileged instructions

e (Can something similar be done for CPU
virtualization?

Advanced Operating Systems Virtual Machine Monitors

Guest Code at Low Privilege Level

e Idea: execute the guest with a low privilege level
e |Intel x86: ring 3
e Hypervisor/ VMM at high privilege level

e When the guest tries to execute privileged
instructions, exception / trap!
e The VMM can handle it

e Will this work?

e Thinking about x86, we can immediately see
some ISsues...

e Example: some unprivileged instructions can
read some parts of the “CPU status” (AKA
machine status word) without generating
exceptions

Advanced Operating Systems Virtual Machine Monitors

More Formal Definitions: Popek and Goldberg

e Paper from 1974!!l

e Formal Requirements for Virtualizable Third
Generation Architectures

e Provides formal definitions for VMM (the term
“nypervisor” is only used in the keywords)

e Uses the formal definitions to determine a set of
requirements for easily and efficiently virtualize the
CPU

e If the requirements are satisfied, it is possible to
execute guest code in the host intercepting the
relevant instructions

e Distinction between sensitive instructions and
privileged instructions

Advanced Operating Systems Virtual Machine Monitors

Privileged and Sensitive Instructions

Privileged instructions (we already know)

e (Can be executed when the CPU is at high
privilege level

e Generate an exception when the CPU is at low
privilege level

Sensitive instructions (these are the “problematic
ones”)

e Change the “CPU configuration” / CPU state
e Reveal something about the CPU state

Popek and Goldberg provide formal definitions (for a
simplified system: only memory, no interrupts, no

paging, ...)

Advanced Operating Systems Virtual Machine Monitors

Sensitive Instructions

e These are the instructions relevant when virtualizing
the CPU!!!
e (Control Sensitive Instructions: change the CPU state

e In Popek and Goldberg’s model, privilege level or
accessible memory - memory is the only
considered resource

e |nreal systems, interrupt table, paging table, ...

e Behavior Sensitive Instructions: effects depend on
the CPU state

e In Popek and Goldberg’s model, privilege level or
accessible memory
e Inreal systems, things are more complex...

Advanced Operating Systems Virtual Machine Monitors

Popek & Goldberg Requirements

A VMM can be easily and efficiently implemented if the
set of sensitive instructions is a subset of the privileged
instructions

e Intuition: all the “problematic” instructions cause an
exception if executed with low privilege level

e Hence a privileged VMM can intercept them by
executing the guest as unprivileged!!!

e More formally, an instruction executed in user mode

either:
e (Generate a result that does not depend on the
“CPU state”...

e ...Or generate an exception!

Advanced Operating Systems Virtual Machine Monitors

Real CPUs vs Popek & Goldberg

e Do real CPUs satisfy Popek & Goldberg
requirements?

e Some of them do... Mainly by IBM

e Other CPUs did not initially comply with the
virtualization requirements

e Motorola 68000: unprivileged instruction able to
read the whole status register

e Fixedin 68010

ARM: some sensitive unprivileged instructions
Intel x86: plenty of sensitive unprivileged

instructions
e MIPS had issue too... Fixed in Release 5 (2012)

Advanced Operating Systems Virtual Machine Monitors

Intel x86 vs Popek & Goldberg

e Original x86 architecture: plenty of sensitive
unprivileged instructions

e Mainly related to the accessibility of status flags
and to the privilege levels bits in segment
registers

S{GDT, IDT, LDT, MSW}

PUSHF and POPF

LAR, LSL, VERR, VERW

PUSH, and POP with segment registers

Advanced Operating Systems Virtual Machine Monitors

Instructions Accessing Special Registers

GDTR, LDTR and IDTR: registers pointing to
descriptor tables (data structures controlling the
CPU operation

SGDT, SILDT and SIDT allow to read the content of
these registers

e Sensitive instructions!
A guest OS can use them to know the host
descriptor tables...

Allowed in user mode (ring 3 - low privilege level)
without raising exceptions!

sMSW allows to read the machine status word (part of
cr0)

e Sensitive too... And still not privileged!

Advanced Operating Systems Virtual Machine Monitors

PUSHF and POPF

e Flags register: contains sensitive information, such
as the interrupt flag
e PUSHF: pushes the flags register on the stack

e (Can be used to know the state of the interrupt
flag
e Does not generate exceptions...

e POPF: pops the flags register from the stack

e Could be used to set / reset the interrupt flag???
It executed from ring 3, the state of if is not
changed, but no exception is generated!!!

Advanced Operating Systems Virtual Machine Monitors

Instructions Accessing the Privilege Level

e LAR, LSL, VERR and VERW play with the privilege
level of a segment (least significant 2 bits of the
segment descriptor)

e Allow to read the privilege level of a segment
Allow to check if a segment can be accessed
from current privilege level

®

e Again, no exception is generated

A guest OS can easily know the host segments
e A guest OS kernel can know that it is not running
inring 0

Advanced Operating Systems Virtual Machine Monitors

PUSH / POP with Segment Registers

PUSH and POP can be used with segment registers
Segment register: contain a segment descriptor

e Two rightmost bits: protection level for the
segment
e Can easily leak from host to guest!!!

e Similar issues with segment registers in other
instructions

STR
MOVE
CALL FAR/INT FAR

Advanced Operating Systems Virtual Machine Monitors

Example: POPF

movl S0, %eax
pushl %eax

popf

Tries to load “0” in the flags register

The flags register contains the interrupt flag = clear
the interrupt flag!

e Clearly not possible at low privilege level (ring 3)

e The interrupt flag (and other flags) is not affected
by POPF at ring 3

e No exception is generated = the VMM cannot know
that the guest is trying to clear i £

Advanced Operating Systems Virtual Machine Monitors

A Dirty Workaround

e Does this mean that VMM / hypervisors could not be
implemented on x867?

e VMWare proved the opposite...

e Notice: Popek and Goldberg say that a VMM cannot
be easily and efficiently implemented

e If we accept complications and performance loss,
we can work around the issue...

e Idea: replace all the sensitive unprivileged
instructions with something that generate an
interrupt / exception!!!

e VMWare & friends used variations of this idea...
Possibly patented?

Advanced Operating Systems Virtual Machine Monitors

The ARM Architecture

e ARM: RISC CPU (32-bit instructions, 16 registers, ...)
with pragmatic design

e Currently one of the major players in embedded
systems

e Many different versions of the ARM core
e Let's consider ARM v7

e Multiple privilege levels: user (USR), system (SYS),
supervisor (sSvC), interrupt (IRQ), fast interrupt
(FIQ), abort (ABT) and undefined (UND)

Advanced Operating Systems Virtual Machine Monitors

ARM vs Popek & Goldberg

e COriginal ARM: some sensitive unprivileged
instructions

e As for x86, mainly related to accessiblility of the
CPU state (status flags and other)

e CPU state:

e Currently Active Processor Status Register
(CPSR), saved in SPSR when switching from user
mode to a privileged mode

e Some coprocessors (example: CP15 - system
coprocessor - controlling caches and similar)

Advanced Operating Systems Virtual Machine Monitors

Example: Accessing the PSR

e CPS modifies the CPSR

e Similar to x86 flags register: can disable
interrupts, etc...

e Obviously, can be done from a privileged mode
only!

e |f executed with low privilege level (user mode), does
nothing!

e Does not trap!!!

e 3So itis control sensitive (can disable interrupts),
behaviour sensitive (its behaviour depends on the
privilege level) and unprivileged!

Advanced Operating Systems Virtual Machine Monitors

ARM Sensitive Unprivileged Instructions

e ARM handling of the PSR — very similar to x86
handling of flags register

e Unprivileged instructions can read it

e Access to interrupt flag and other sensible
information (behaviour sensitive)

e Access to the privilege level (that is part of
PSR) < similar to x86 issues with segment
registers

e Unprivileged instructions can try to write it
without generating exceptions!

e Looks like ARM “inherited” from x86 some of the
Issues that make it non-compliant with Popek &
Goldberg requirements

Advanced Operating Systems Virtual Machine Monitors

Virtual Memory

e Popek and Goldberg considered a very simple
model of virtual memory

e Segmented architecture with only one segment
e IfVA> limit, memory fault (exception)
e Otherwise, PA =V A + base

e Paging can also be supported, if P&G requirements
are met and the VMM can intercept page faults

e The VMM knows when the guest accesses the
page table register

e The VMM knows when the guest causes a page
fault

e The VMM can know when the guest accesses

the page table

Advanced Operating Systems Virtual Machine Monitors

Virtualized Paging

e The guest page table is not the “real” (host) page
table

e The VMM can intercept accesses to the page
table reqister...

e The guest can freely modity its “virtualized page
table”

e Without even knowing that it is not the real page
table!

e When the guest tries to use some of the mappings it
created, a host page fault is generated!

e The VMM can handle it adding a proper mapping
in the host page table

Advanced Operating Systems Virtual Machine Monitors

1. The guest sets the page table register (example:
cr3) to some value

Exception — the VMM intercept the write
Now the VMM knows where the guest page

table is
e |f the guest tries to read the page table register,
the read is intercepted by the VMM, that returns

this value
e The host page table is not affected

2. The guest modifies its page table mapping address
V Ay Into PA;

e Nothing happens in the VMM / host

Advanced Operating Systems Virtual Machine Monitors

3. The guest accesses V' A,

e VA, is not mapped in the “real” page table =
page fault!

4. The VMM handles the page fault

e Look at the guest page table
Find mapping for V' A,
Create appropriate mapping in the host page
table

5. The guest access to V. A; completes without issues

e Technique sometimes known as “shadow paging”

Advanced Operating Systems Virtual Machine Monitors

Shadow Paging - 1

e A “shadow page table” is used for converting guest
VA into host PA

e The guest page table is not really used by the
MMU!!!

e Used only by the VMM to update the shadow
page table

e The VMM handles page faults

e Ifa VAis not mapped in the guest page table,
page fault forwarded to the guest
e Otherwise, used to update the shadow page table

e A guest memory access can result in 2 page faults!!!

Advanced Operating Systems Virtual Machine Monitors

Shadow Paging - 2

e The VMM can detect accesses to the guest page
table, and update the shadow page table
iImmediately

Avoid “lazy behaviour”

Can avoid the double page fault...

...At the cost of introducing other page faults!
More complex code

e In any case, huge overhead!!!

e (Can we do better?
e Not without paravirtualization or hardware
support!

Advanced Operating Systems Virtual Machine Monitors

Hardware Support for Page Table Virtualization

In non-virtualized CPUs, the MMU translates VAs to
PAs

e T[ranslation performed in hw — fast, efficient
e [LB-like caching tricks to improve performance

What to do in virtualized CPUs?

e Additional level of indirection: VA — PA — MA
(Machine Address)

e VA and PA are guest addresses, MA is a host
address

The MMU uses two page tables: guest page table
(VA — PA) and host page table (PA — MA)

e (Can use TLB-like caches and trickery, etc...

Advanced Operating Systems Virtual Machine Monitors

Extended / Nested Page Tables

e Hardware feature provided by the major CPU
manufacturers

e Intel: Extended Page Tables (EPT)
e AMD: Nested Page Tables (NPT)
e ARM has a similar thing, too...

e Different naming, small differences, similar concepts

e The VMM can setup a Nested / Extended page
table to convert guest PAs in host MAs

e The guest can handle its page table (no need to
iIntercept accesses to the guest page table!)

e The VMM just needs to update its extended page
table when a guest tries to access a PA not
mapped in MA

Advanced Operating Systems Virtual Machine Monitors

	Virtual Machines
	VMs and OSs
	CPU Virtualization
	Virtualizable CPU Architectures
	OSs for Virtualizable Architectures
	ParaVirtualization
	Example of (Toy) CPU
	CPUs, Programs, & Friends
	Executing a Program
	Physical Machines...
	...And Abstract Machines!
	Abstract Machines and Languages
	Abstract Machines Behaviour
	Abstract Machine Example
	Implementing a Language
	Software Implementation
	Pure Interpreters
	Pure Compilers
	Hybrid Implementation
	CPU Emulators
	Interpreting CPU Instructions
	Compiling Blocks of CPU Instructions
	Qemu TCG
	CPU Virtualization
	The Monitor / Hypervisor
	Direct Execution of Untrusted Guest Code
	Guest Code at Low Privilege Level
	More Formal Definitions: Popek and Goldberg
	Privileged and Sensitive Instructions
	Sensitive Instructions
	Popek & Goldberg Requirements
	Real CPUs vs Popek & Goldberg
	Intel x86 vs Popek & Goldberg
	Instructions Accessing Special Registers
	PUSHF and POPF
	Instructions Accessing the Privilege Level
	PUSH / POP with Segment Registers
	Example: POPF
	A Dirty Workaround
	The ARM Architecture
	ARM vs Popek & Goldberg
	Example: Accessing the PSR
	ARM Sensitive Unprivileged Instructions
	Virtual Memory
	Virtualized Paging
	Example - 1
	Example - 2
	Shadow Paging - 1
	Shadow Paging - 2
	Hardware Support for Page Table Virtualization
	Extended / Nested Page Tables

