
Algrbraic Data Types

Luca Abeni

luca.abeni@santannapisa.it

Data Types

Functional Programming Techniques Advanced Data Types

• Data types can be used to impose constraints on
acceptable expressions

• Expressions that do not type-check are invalid!

• To do this, we need (at least):

• A set of primitive (pre-defined) types
• Some way to create new types
• Some rules to perform type-checking

• Informally speaking, a type system

Issues with Types

Functional Programming Techniques Advanced Data Types

• Some type systems risk to compromise the
Turing-completeness of the language

• Think about typed lambda calculus...

• In particular, it important to have appropriate rules
for defining new types

• Again: “function types” are probably not enough
• Expressions resulting in infinite recursion do not

type check!

• We previously said we need “recursive types”, but...

• What is a recursive type?
• What is it useful for?
• How can we use it?

More on Data Types

Functional Programming Techniques Advanced Data Types

• Every programming language has a set of primitive
types

• And many languages allow to define new types

• Simple way to define new types: apply sum or
product operations to existing types

• Product T1 × T2: type with possible values given
by couples of values from T1 and T2

• Sum T1 + T2: type with possible values given by
values from T1 or values from T2

• Sum == disjoint union; Product == cartesian product
• If |T | is the number of values of type T , then

|T1 × T2| = |T1| · |T2| and |T1 + T2| = |T1|+ |T2|

Algebraic Data Types

Functional Programming Techniques Advanced Data Types

• A set (the set of the language’s data types), a sum
operation and a product operation... It’s an algebra!

• Algebra of the data types; types are called
Algebraic Data Types!

• Issue: the sum is a disjoint union...

• Easy to do “float + bool” (type with possible
values integers or booleans)...

• ...But what about “int + int” (or similar)?
• The types have to be tagged somehow...

Algebraic Data Types and Constructors

Functional Programming Techniques Advanced Data Types

• Solution adopted by many programming languages:
do not sum types directly, but first apply a tagging
function to them

• Constructor: function generating the values of
the type to be summed

• Summing types generated by different
constructors, the issue is solved!

• Variant: set of values generated by a constructor

• Different constructors generate disjoint variants
• Hence, instead of “int + int” we can use “Left(int)

+ Right(int)”

Examples

Functional Programming Techniques Advanced Data Types

• C unions are a special case of tagged sum
• “test = i(int) + f(float)” is

union example {
i n t i ;
f l o a t f ;

} ;

• Of course, algebraic data types are more generic
(0-arguments or multi-argument constructors, etc...)

• All constructors with 0 arguments: enum type
• Haskell, ML and others fully support ADT

datatype t e s t = i of i n t | f of r e a l ;

data Test = I I n t | F Float

Example: Option Type

Functional Programming Techniques Advanced Data Types

• Type containing a value or nothing

• Two constructors: “Nothing” (without arguments)
and “Just” (with one argument of the desired
type)

• Example: integer or nothing → Option int = Nothing
+ Just(int)

• Idea: instead of using a null pointer...
• ...Use an option type: Pointer to int = Nothing +

Just(int *)

• Advantage: only the “Just” variant can be
dereferenced...

• NULL pointer dereferences do not even compile!

Generic Data Types

Functional Programming Techniques Advanced Data Types

• The definition of a new type might depend on a “type
variable”

• Parametric type, depending on another type “T”,
denoted by a variable

• Type variables, generally indicated as greek
letters

• Example: generic option type

• Not “integer or nothing”, but “type α or nothing”
• α: type variable

• In Haskell, something like

data Option a = Nothing | Just a

• Used for many other things too (lists, Monads, ...)

	Data Types
	Issues with Types
	More on Data Types
	Algebraic Data Types
	Algebraic Data Types and Constructors
	Examples
	Example: Option Type
	Generic Data Types

