
Recursive Data Types

Luca Abeni

luca.abeni@santannapisa.it



Recursive Data Types

Functional Programming Techniques Advanced Data Types

• To define a data type, we must (also) define all its
possible values

• Set of possible values → can be defined by
induction...

• Can induction/recursion be used to define a new
data type?

• How? We need induction base and induction
step

• Induction base: one (or more) constructor(s)
having 0 parameters (or, no parameters of the
data type we are defining)

• Induction step: constructor having a parameter of
the type we are defining

• Looks... Confusing??? Let’s look at some examples!



Recursive Data Types: Example

Functional Programming Techniques Advanced Data Types

• Let’s define the “natural numbers” data type (set of
values: N )

• 0 ∈ N : constructor zero (with no parameters)
• n ∈ N ⇒ n+ 1 ∈ N : constructor succ, having as

an argument a natural number

datatype nat = zero | succ of nat ;

data Nat = Zero | Succ Nat

• How to use this funny definition?

• Combination of pattern matching and recursion
• Familiar to people knowing functional

programming



More Interesting Example: Lists

Functional Programming Techniques Advanced Data Types

• Lists can also be defined by induction/recursion
(simple example: list of intergers)

• Inductive base: an empty list is a list
• Inductive step: A non-empty list is an integer

followed by a list

• Recursive Data Type: a non-empty list is defined
based on the list data type (constructor receiving a
list as a parameter)

• Two constructors

• Empty list constructor
• Constructor for non-empty lists



Lists as RDTs — 1

Functional Programming Techniques Advanced Data Types

• Two constructors

• Empty list constructor (no parameters)
• Constructor for non-empty lists (two parameters:

an integer and a list)

• Other operations

• car: returns the first element of a non-empty list
(head)

• cdr: given a non-empty list, returns the “rest of
the list”



Lists as RDTs — 2

Functional Programming Techniques Advanced Data Types

• How are lists generally implemented?
• Functional languages (Haskell, ML Lisp & friends, ...)

• Recursive data type!!!
• “cons” constructor: parameter of type int *

list (or, a parameter of type int, but returns a
function list -> list)

• Imperative languages: pointers!

• Structure with 2 fields (types “int” and “list*”)
• Second field: pointer to next element
• Cannot be of type “list”, → use “pointer to

list”!



RDTs vs Pointers

Functional Programming Techniques Advanced Data Types

• See? Imperative languages use pointers and explicit
memory allocation...

• Adding an element to list implies doing some
malloc()/new for a node structure, setting some
“next” pointers, etc...

• ...In functional languages, RDTs avoid the need for
pointers, and memory allocation/deallocation is
hidden...

• Adding an element in front of a list “l” is as
simple as “let l1 = cons(e, l)” or similar!

• The implementation of the language abstract
machine will take care of allocating memory, etc...


	Recursive Data Types
	Recursive Data Types: Example
	More Interesting Example: Lists
	Lists as RDTs — 1
	Lists as RDTs — 2
	RDTs vs Pointers

