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Rust History
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• Started in 2006 by a Mozilla developer (Graydon
Hoare) as a side project

• First version of the compiler written in OCaml
(functional programming language)

• In 2009, Mozilla realized that Firefox was suffering
because of a large amount of segfaults

• These issues could be addressed by using a
“safer” language

• ...So, Mozilla started sponsoring Rust
development

• First self-hosted compiler in 2010/2011
• First release (v1) in 2015
• Continuos community growth



Rust Evolution
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• Originally sponsored by Mozilla for Firefox, then
evolved in a “strange way”...

• Considered for a long time only as a “system
programming language”

• System programming: not really related to web
browsers...

• Today has multiple applications (see
https://www.rust-lang.org, “Build it in Rust”):

• Command Line tools
• WebAssembly
• Networking applications
• Embedded systems

https://www.rust-lang.org


Rust in Action
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• Mozilla uses it in its new browser engine
(https://servo.org/)

• Microsoft proposed as a proactive way to address
security and prevent vulnerabilities:
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/

• Intel (“Rust is the future of systems programming”)

• Used Rust for its QEMU replacement:
https://github.com/cloud-hypervisor/cloud-hypervisor

• Amazon did something similar:
https://github.com/firecracker-microvm/firecracker

• ...

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/firecracker-microvm/firecracker


Various Visions of Rust
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• Today, Rust is supported by a large community (not
only Mozilla)

• Various visions of the language and of the
“ecosystem”

• Rust as a language: safety, performance, “zero-cost
abstractions” (abstractions without overhead), ...

• Rust as an ecosystem:

• Not only compiler, but also other tools (cargo
package manager, ...)

• Set of “crates” that can be used by rust
applications



Rust Programming Language Ideas
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fn main() {
println!("Hello, world!")

}

• C-like syntax (see Rust ”hello world”...)

• But support for higher-level abstractions!

• No heavy runtime (no GC, type/memory checks are
mostly static, ...)

• Without loosing safety...

• Try to provide control to user (do not hide memory
allocation/deallocation, ...)

• Only when needed



C: Control to User
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struct s {
int v;
...

};

p = malloc(sizeof(struct s));
p->v = 5;
...
free(p)

• Control on the memory layout of data

• Even better: “packed” attribute and “intxx t”
types

• Control on the amount of allocated memory
• Control on when memory is allocated/deallocated



Too Much Control?
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• Usual issues: things like

p = malloc(sizeof(int)); ???
free(p); a = p->v;

...

• Control on memory (de)allocations risks to allow
errors on malloc() and free()

• Control on pointers creates issues with
aliasing/leaks

• We know a possible solution: RAII



Rust and RAII
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struct S {
v: i32,
...

}

fn WorkOnS() {
let mut p = Box::new(S {v: 5, ...});

p.v = ...
/* use p ... */
...

}

• When p goes out of scope, memory is deallocated!

• Problem: things like “let mut p1 = p” risk to
break the thing!

• Rust has to somehow make sure that there is
only an active reference/pointer to the structure



Rust Vision of “Control to User”
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• In the Rust example, notice:

• Control on the structure size (“i32”)
• Explicit memory allocation (“Box::new(S v:

5, ...)”)
• No constructors!
• Control on the variable mutability (“let mut p”)

• The type of “p” (pointer to “struct S” — Box<S>)
is not explicitly specified

• Type inference!



Rust and Assignments (Move Semantics)
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• Here, Rust needs to enforce that there is only one
pointer to the allocated structure:

struct S {
v: i32

}

fn work_on_s() {
let mut p = Box::new(S {v: 5});

• Assignments have move semantics: “let p1=p”
moves the ownership of the structure from “p” to “p1”
⇒ after this, “p” is invalid

• So, this does not build:
let mut p = Box::new(S {v: 5});
let p1 = p;
println!("v:{}", p.v);



Move and... Borrow?
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• Assignment: move the ownership of a data structure

• Can a value be “borrowed”?
• Meaning, “p” owns a data structure; passes it to

“p1” and gets it back when “p1” goes out of
scope

• While the value is borrowed, “p” cannot modify
it...

• Yes, we can! Use references (“&”)
let mut p = Box::new(S {v: 5});
{
let p1 = &p;
println!("p1.v:{}",p1.v)

}
println!("v:{}", p.v);

• “p.v = 666;” in the inner block can fail to build



Borrowing: Rules
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• A value owned by a variable can be borrowed as
mutable or as immutable

• Mutable reference (“&mut”) or immutable
references (“&”)

• Mutable reference: only one; immutable
references: can borrow multiple times

• When borrowed, it cannot be modified by the original
owner

• rustc sometimes does “smart things” (if a variable
is not used after a line of code, it is considered
dropped there)

• Borrowing is used also for function parameters
(passed by reference)



Rust Syntax: the Basics
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• C-Like syntax: program written as a set of functions

• Special “main” function invoked when the
program is executed

• Function: block of code associated to a name (+
environment + parameters + return value)

• Syntax: “fn name(parameters) -> return type”
followed by a block of code

• Special case: if the return type is “()” (unit type),
“-> ()” can be avoided

• Block of code: contains variable definitions and
expressions

• As in C, C++, Java, ..., start with “{” and finish
with “}”



Rust Syntax: Peculiarities
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• Difference with C & friends: meaning of “;”

• No “end of instruction”, but separator between
expressions

• A block of code is an expression

• Evaluates to the value of the last expression of
the block

• Special case: if the last expression is “()”, it can
be removed

• Example: “{println!("Hi"); ()}” and
“{println!("Hi");}” are the same

• Example: “{5;}” and “{5}” are different (the first
evaluates to “()”, the second to “5”

• Corollary: no need for a “return” keyword!



So... Hello!!!
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• Let’s start with a “hello world” program...

• “main” function taking no arguments and
returning no value

• “returning no value” means “returning a value
of unit type”

• Unit type: type having only one value: “()”

• Remember: “-> ()” can be avoided

• To print values on stdout, use the “println!()”
macro

fn main() {
println!("Hello, world!")

}

• Notice: no “;” at the end... Why?



Slightly More Interesting Example

Safe System Programming Introduction to Rust

fn mult2(v: i32) -> i32 {
v * 2

}

fn main() {
let number = 5;
let number2 = mult2(number);

println!("{} multipled by 2 is {}",
number, number2)

}

• Notice how “mult2” returns its result
• To print the content of a variable, use “{}” in the

format string

• As convenient as C’s printf()...
• ...But safer! The compiler can actually check the

type of each printed variable



The Rust Type System
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• Set of predefined types

• The usual scalar types (will see in next slides)

• Set of mechanisms for building new types (based on
existing ones)

• Based on algebraic data types
• Product types (structures and tupes) and sum

types (enums)

• Set of rules for working with types

• Rust is statically typed

• Types of variables known at build time

• Strict compatibility rules
• Type inference by default



Type Inference
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• The compiler tries to infer the type of variables

• No need to always specify variable types...
• ...But, sometimes, the compiler might use some

help!

• Example: this fails to build:
let s = "123".to_string();
let n = s.parse().unwrap();

• “parse()” returns a type encapsulating the result...

• But, which type is the result? (integer? floating
point? ...?)

• Type annotations are needed, here!
let n = s.parse::<f64>().unwrap();
let n1: i32 = s.parse.unwrap();



Scalar, Compound, and Custom Types
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• Different ways to classify types...
• ...But a distinction between scalar types and

compound types is generally recognized

• Again, various definitions (of “scalar”, in this
case!)

• Rust also introduce custom types (structures and
enumerations)

• Primitive (predefined) types are generally scalar
• In Rust, 4 classes of scalar types: integers, floating

point, boolean, and character
• Debatable thing: the unit type “()”

• Is it a scalar type (with only one value “()”)...
• Or is it a tuple with 0 elements?



Rust Never Type and Unit Type
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• Never: type “!” with no possible values

• What? How is it useful?
• Return value of functions that never return...
• Considered compatible with every other type...

• Unit: type “()” with one single value “()”

• Similar to the “void” type of other languages
• Used for functions returning no values

• Is it a tupe (compound type) or a scalar type?

• Official Rust documentation is not clear about
this: https://doc.rust-lang.org/rust-by-example/primitives.html

https://doc.rust-lang.org/reference/types/tuple.html

https://doc.rust-lang.org/rust-by-example/primitives.html
https://doc.rust-lang.org/reference/types/tuple.html


Rust Boolean Type
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• Type bool, encoded on 1 byte, with only two values

• true, false

• Used for boolean predicates (in if, etc...)
• Big difference with C: bool is not compatible with

integer types

• “if (d) res = n / d; else res = 0;” is
valid C

• “if d {res = n / d;} else {res = 0;}”
is not valid Rust

• Should be “if d != 0 {res = n / d;}
else {res = 0;}”

• More rusty: “res = if d != 0 {n / d}
else {0}”



Rust Integer Types
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• Rust allows to control both size and encoding
• Can be signed or unsigned

• Signed: two’s complement (difference with C: the
encoding is specified) ∈ [−(2b−1), 2b−1 − 1)]

• Unsigned: ∈ [0, 2b − 1]

• Represented on 8, 16, 32, 64 or 128 bits
• i8, i16, i32, i64, i128 and u8, u16, u32, u64,

u128

• “isize” and “usize” types: represented on an
architecture-dependent number of bits



Integer Overflow in Rust
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• No C-like UBs, but behaviour dependent on
compilation options

• Program compiled in debug mode (default) →
mathematical operations causing overflows crash
(panic())

• Program compiled in release mode (“rustc -O”)
→ mathematical operation causing overflows use
modular arithmetic

• Notice: both these behaviours are safe!



Rust Floating Point Types
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• Represented on 32 or 64 bits

• Using the IEEE 754 standard
• 32 bits is single precision
• 64 bits is double precision

• f32 and f64

• f64 is default (“let f = 3.14” gives an f64

variable)



Rust Characters
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• Type char, similar to C characters

• Same syntax (“c = ’a’”)

• Big difference: stored on 4 bytes, encode Unicode
Scalar Values

• Whatever they are...



Compound Types
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• Tuples and arrays

• Both can be seen as product types
• Tuple: elements can have different types;

generally accessed through pattern matching
• Arrays: uniform (all elements have the same

type); can be accessed through an index

• Tuple: list of comma-separated values, inside
parentheses

• Example: “(3.14, "pi")”
• Also possible to give hints about the types: “let

t: (f32, &str) = (3.14, "pi")”



Compound Types — Arrays
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• Array: list of comma-separated values, inside square
brackets

• Example: “[3.14, 6.28]”
• Things like “[2, 3.14]” are not OK

• Array of “n” elements initialized to “v”: “[v; n]”
• Random access to single elements is possible

• And array bounds are checked!

• Rust arrays are not vectors (fixed size, cannot grow)
• Rust introduces some complications due to “slices”...

Will see later!



Custom Types
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• Built using structures and enumerations
• Based on algebraic data type: product and sum
• Structures: C-like “struct” syntax

• This is a simplification; tuple-like structures and
empty structures also exist

• Enumerations: “enum” keyword, followed by a
comma-separated list of variants (inside “{ }”)

• Single-value variants: similar to C-style enums
• Variants generated by a constructor with

parameters... Rust uses structures (mainly
tuple-style, but C-style could be used too)

• Method and functions can also be attached to
structures and enumerations...



Rust Variables
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• Variables are defined using the “let” keyword

• Typically defined and initialized at the same time
• The compiler can generally infer the type of a

variable

• As usual, can be mutable or immutable

• Rust variables are immutable by default
• Mutable variables must be explicitly defined as so

(“let mut”)
• If a variable is defined as mutable without

apparent reasons, the compiler complains!

• Assignments can be performed only on mutable
variables



Example
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This does not compile
fn main() {
let x = 5;
println!("The value of x is: {}", x);
x = 6;
println!("The value of x is: {}", x);

}

Changing “let x = 5;” into “let mut x = 5;” fixes
the issue.



Shadowing
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• Shadowing: the same name can be associated to
multiple variables

• The last “active” (in scope) binding is used
• Something like this is valid:

fn main() {
let x = 5;
println!("The value of x is: {}", x);
let x = 6;
println!("The value of x is: {}", x);

}

• “let x = 6;” is the definition of a new variable, not
an assignment



Shadowing
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• To better understand shadowing, try this:

fn main()
{
let x = 5;

println!("The value of x is: {}", x);
{
let x = 6;

println!("The value of x is now: {}", x);
}
println!("The value of x is now: {}", x);

}

• The second “let x” defines a new variable; when it
goes out of scope, the first “x” is used
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