
Introduction to Rust

Luca Abeni

luca.abeni@santannapisa.it

January 19, 2024

Rust History

Safe System Programming Introduction to Rust

• Started in 2006 by a Mozilla developer (Graydon
Hoare) as a side project

• First version of the compiler written in OCaml
(functional programming language)

• In 2009, Mozilla realized that Firefox was suffering
because of a large amount of segfaults

• These issues could be addressed by using a
“safer” language

• ...So, Mozilla started sponsoring Rust
development

• First self-hosted compiler in 2010/2011
• First release (v1) in 2015
• Continuos community growth

Rust Evolution

Safe System Programming Introduction to Rust

• Originally sponsored by Mozilla for Firefox, then
evolved in a “strange way”...

• Considered for a long time only as a “system
programming language”

• System programming: not really related to web
browsers...

• Today has multiple applications (see
https://www.rust-lang.org, “Build it in Rust”):

• Command Line tools
• WebAssembly
• Networking applications
• Embedded systems

https://www.rust-lang.org

Rust in Action

Safe System Programming Introduction to Rust

• Mozilla uses it in its new browser engine
(https://servo.org/)

• Microsoft proposed as a proactive way to address
security and prevent vulnerabilities:
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/

• Intel (“Rust is the future of systems programming”)

• Used Rust for its QEMU replacement:
https://github.com/cloud-hypervisor/cloud-hypervisor

• Amazon did something similar:
https://github.com/firecracker-microvm/firecracker

• ...

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://github.com/cloud-hypervisor/cloud-hypervisor
https://github.com/firecracker-microvm/firecracker

Various Visions of Rust

Safe System Programming Introduction to Rust

• Today, Rust is supported by a large community (not
only Mozilla)

• Various visions of the language and of the
“ecosystem”

• Rust as a language: safety, performance, “zero-cost
abstractions” (abstractions without overhead), ...

• Rust as an ecosystem:

• Not only compiler, but also other tools (cargo
package manager, ...)

• Set of “crates” that can be used by rust
applications

Rust Programming Language Ideas

Safe System Programming Introduction to Rust

fn main() {
println!("Hello, world!")

}

• C-like syntax (see Rust ”hello world”...)

• But support for higher-level abstractions!

• No heavy runtime (no GC, type/memory checks are
mostly static, ...)

• Without loosing safety...

• Try to provide control to user (do not hide memory
allocation/deallocation, ...)

• Only when needed

C: Control to User

Safe System Programming Introduction to Rust

struct s {
int v;
...

};

p = malloc(sizeof(struct s));
p->v = 5;
...
free(p)

• Control on the memory layout of data

• Even better: “packed” attribute and “intxx t”
types

• Control on the amount of allocated memory
• Control on when memory is allocated/deallocated

Too Much Control?

Safe System Programming Introduction to Rust

• Usual issues: things like

p = malloc(sizeof(int)); ???
free(p); a = p->v;

...

• Control on memory (de)allocations risks to allow
errors on malloc() and free()

• Control on pointers creates issues with
aliasing/leaks

• We know a possible solution: RAII

Rust and RAII

Safe System Programming Introduction to Rust

struct S {
v: i32,
...

}

fn WorkOnS() {
let mut p = Box::new(S {v: 5, ...});

p.v = ...
/* use p ... */
...

}

• When p goes out of scope, memory is deallocated!

• Problem: things like “let mut p1 = p” risk to
break the thing!

• Rust has to somehow make sure that there is
only an active reference/pointer to the structure

Rust Vision of “Control to User”

Safe System Programming Introduction to Rust

• In the Rust example, notice:

• Control on the structure size (“i32”)
• Explicit memory allocation (“Box::new(S v:

5, ...)”)
• No constructors!
• Control on the variable mutability (“let mut p”)

• The type of “p” (pointer to “struct S” — Box<S>)
is not explicitly specified

• Type inference!

Rust and Assignments (Move Semantics)

Safe System Programming Introduction to Rust

• Here, Rust needs to enforce that there is only one
pointer to the allocated structure:

struct S {
v: i32

}

fn work_on_s() {
let mut p = Box::new(S {v: 5});

• Assignments have move semantics: “let p1=p”
moves the ownership of the structure from “p” to “p1”
⇒ after this, “p” is invalid

• So, this does not build:
let mut p = Box::new(S {v: 5});
let p1 = p;
println!("v:{}", p.v);

Move and... Borrow?

Safe System Programming Introduction to Rust

• Assignment: move the ownership of a data structure

• Can a value be “borrowed”?
• Meaning, “p” owns a data structure; passes it to

“p1” and gets it back when “p1” goes out of
scope

• While the value is borrowed, “p” cannot modify
it...

• Yes, we can! Use references (“&”)
let mut p = Box::new(S {v: 5});
{
let p1 = &p;
println!("p1.v:{}",p1.v)

}
println!("v:{}", p.v);

• “p.v = 666;” in the inner block can fail to build

Borrowing: Rules

Safe System Programming Introduction to Rust

• A value owned by a variable can be borrowed as
mutable or as immutable

• Mutable reference (“&mut”) or immutable
references (“&”)

• Mutable reference: only one; immutable
references: can borrow multiple times

• When borrowed, it cannot be modified by the original
owner

• rustc sometimes does “smart things” (if a variable
is not used after a line of code, it is considered
dropped there)

• Borrowing is used also for function parameters
(passed by reference)

Rust Syntax: the Basics

Safe System Programming Introduction to Rust

• C-Like syntax: program written as a set of functions

• Special “main” function invoked when the
program is executed

• Function: block of code associated to a name (+
environment + parameters + return value)

• Syntax: “fn name(parameters) -> return type”
followed by a block of code

• Special case: if the return type is “()” (unit type),
“-> ()” can be avoided

• Block of code: contains variable definitions and
expressions

• As in C, C++, Java, ..., start with “{” and finish
with “}”

Rust Syntax: Peculiarities

Safe System Programming Introduction to Rust

• Difference with C & friends: meaning of “;”

• No “end of instruction”, but separator between
expressions

• A block of code is an expression

• Evaluates to the value of the last expression of
the block

• Special case: if the last expression is “()”, it can
be removed

• Example: “{println!("Hi"); ()}” and
“{println!("Hi");}” are the same

• Example: “{5;}” and “{5}” are different (the first
evaluates to “()”, the second to “5”

• Corollary: no need for a “return” keyword!

So... Hello!!!

Safe System Programming Introduction to Rust

• Let’s start with a “hello world” program...

• “main” function taking no arguments and
returning no value

• “returning no value” means “returning a value
of unit type”

• Unit type: type having only one value: “()”

• Remember: “-> ()” can be avoided

• To print values on stdout, use the “println!()”
macro

fn main() {
println!("Hello, world!")

}

• Notice: no “;” at the end... Why?

Slightly More Interesting Example

Safe System Programming Introduction to Rust

fn mult2(v: i32) -> i32 {
v * 2

}

fn main() {
let number = 5;
let number2 = mult2(number);

println!("{} multipled by 2 is {}",
number, number2)

}

• Notice how “mult2” returns its result
• To print the content of a variable, use “{}” in the

format string

• As convenient as C’s printf()...
• ...But safer! The compiler can actually check the

type of each printed variable

The Rust Type System

Safe System Programming Introduction to Rust

• Set of predefined types

• The usual scalar types (will see in next slides)

• Set of mechanisms for building new types (based on
existing ones)

• Based on algebraic data types
• Product types (structures and tupes) and sum

types (enums)

• Set of rules for working with types

• Rust is statically typed

• Types of variables known at build time

• Strict compatibility rules
• Type inference by default

Type Inference

Safe System Programming Introduction to Rust

• The compiler tries to infer the type of variables

• No need to always specify variable types...
• ...But, sometimes, the compiler might use some

help!

• Example: this fails to build:
let s = "123".to_string();
let n = s.parse().unwrap();

• “parse()” returns a type encapsulating the result...

• But, which type is the result? (integer? floating
point? ...?)

• Type annotations are needed, here!
let n = s.parse::<f64>().unwrap();
let n1: i32 = s.parse.unwrap();

Scalar, Compound, and Custom Types

Safe System Programming Introduction to Rust

• Different ways to classify types...
• ...But a distinction between scalar types and

compound types is generally recognized

• Again, various definitions (of “scalar”, in this
case!)

• Rust also introduce custom types (structures and
enumerations)

• Primitive (predefined) types are generally scalar
• In Rust, 4 classes of scalar types: integers, floating

point, boolean, and character
• Debatable thing: the unit type “()”

• Is it a scalar type (with only one value “()”)...
• Or is it a tuple with 0 elements?

Rust Never Type and Unit Type

Safe System Programming Introduction to Rust

• Never: type “!” with no possible values

• What? How is it useful?
• Return value of functions that never return...
• Considered compatible with every other type...

• Unit: type “()” with one single value “()”

• Similar to the “void” type of other languages
• Used for functions returning no values

• Is it a tupe (compound type) or a scalar type?

• Official Rust documentation is not clear about
this: https://doc.rust-lang.org/rust-by-example/primitives.html

https://doc.rust-lang.org/reference/types/tuple.html

https://doc.rust-lang.org/rust-by-example/primitives.html
https://doc.rust-lang.org/reference/types/tuple.html

Rust Boolean Type

Safe System Programming Introduction to Rust

• Type bool, encoded on 1 byte, with only two values

• true, false

• Used for boolean predicates (in if, etc...)
• Big difference with C: bool is not compatible with

integer types

• “if (d) res = n / d; else res = 0;” is
valid C

• “if d {res = n / d;} else {res = 0;}”
is not valid Rust

• Should be “if d != 0 {res = n / d;}
else {res = 0;}”

• More rusty: “res = if d != 0 {n / d}
else {0}”

Rust Integer Types

Safe System Programming Introduction to Rust

• Rust allows to control both size and encoding
• Can be signed or unsigned

• Signed: two’s complement (difference with C: the
encoding is specified) ∈ [−(2b−1), 2b−1 − 1)]

• Unsigned: ∈ [0, 2b − 1]

• Represented on 8, 16, 32, 64 or 128 bits
• i8, i16, i32, i64, i128 and u8, u16, u32, u64,

u128

• “isize” and “usize” types: represented on an
architecture-dependent number of bits

Integer Overflow in Rust

Safe System Programming Introduction to Rust

• No C-like UBs, but behaviour dependent on
compilation options

• Program compiled in debug mode (default) →
mathematical operations causing overflows crash
(panic())

• Program compiled in release mode (“rustc -O”)
→ mathematical operation causing overflows use
modular arithmetic

• Notice: both these behaviours are safe!

Rust Floating Point Types

Safe System Programming Introduction to Rust

• Represented on 32 or 64 bits

• Using the IEEE 754 standard
• 32 bits is single precision
• 64 bits is double precision

• f32 and f64

• f64 is default (“let f = 3.14” gives an f64

variable)

Rust Characters

Safe System Programming Introduction to Rust

• Type char, similar to C characters

• Same syntax (“c = ’a’”)

• Big difference: stored on 4 bytes, encode Unicode
Scalar Values

• Whatever they are...

Compound Types

Safe System Programming Introduction to Rust

• Tuples and arrays

• Both can be seen as product types
• Tuple: elements can have different types;

generally accessed through pattern matching
• Arrays: uniform (all elements have the same

type); can be accessed through an index

• Tuple: list of comma-separated values, inside
parentheses

• Example: “(3.14, "pi")”
• Also possible to give hints about the types: “let

t: (f32, &str) = (3.14, "pi")”

Compound Types — Arrays

Safe System Programming Introduction to Rust

• Array: list of comma-separated values, inside square
brackets

• Example: “[3.14, 6.28]”
• Things like “[2, 3.14]” are not OK

• Array of “n” elements initialized to “v”: “[v; n]”
• Random access to single elements is possible

• And array bounds are checked!

• Rust arrays are not vectors (fixed size, cannot grow)
• Rust introduces some complications due to “slices”...

Will see later!

Custom Types

Safe System Programming Introduction to Rust

• Built using structures and enumerations
• Based on algebraic data type: product and sum
• Structures: C-like “struct” syntax

• This is a simplification; tuple-like structures and
empty structures also exist

• Enumerations: “enum” keyword, followed by a
comma-separated list of variants (inside “{ }”)

• Single-value variants: similar to C-style enums
• Variants generated by a constructor with

parameters... Rust uses structures (mainly
tuple-style, but C-style could be used too)

• Method and functions can also be attached to
structures and enumerations...

Rust Variables

Safe System Programming Introduction to Rust

• Variables are defined using the “let” keyword

• Typically defined and initialized at the same time
• The compiler can generally infer the type of a

variable

• As usual, can be mutable or immutable

• Rust variables are immutable by default
• Mutable variables must be explicitly defined as so

(“let mut”)
• If a variable is defined as mutable without

apparent reasons, the compiler complains!

• Assignments can be performed only on mutable
variables

Example

Safe System Programming Introduction to Rust

This does not compile
fn main() {
let x = 5;
println!("The value of x is: {}", x);
x = 6;
println!("The value of x is: {}", x);

}

Changing “let x = 5;” into “let mut x = 5;” fixes
the issue.

Shadowing

Safe System Programming Introduction to Rust

• Shadowing: the same name can be associated to
multiple variables

• The last “active” (in scope) binding is used
• Something like this is valid:

fn main() {
let x = 5;
println!("The value of x is: {}", x);
let x = 6;
println!("The value of x is: {}", x);

}

• “let x = 6;” is the definition of a new variable, not
an assignment

Shadowing

Safe System Programming Introduction to Rust

• To better understand shadowing, try this:

fn main()
{
let x = 5;

println!("The value of x is: {}", x);
{
let x = 6;

println!("The value of x is now: {}", x);
}
println!("The value of x is now: {}", x);

}

• The second “let x” defines a new variable; when it
goes out of scope, the first “x” is used

	Rust History
	Rust Evolution
	Rust in Action
	Various Visions of Rust
	Rust Programming Language Ideas
	C: Control to User
	Too Much Control?
	Rust and RAII
	Rust Vision of ``Control to User''
	Rust and Assignments (Move Semantics)
	Move and... Borrow?
	Borrowing: Rules
	Rust Syntax: the Basics
	Rust Syntax: Peculiarities
	So... Hello!!!
	Slightly More Interesting Example
	The Rust Type System
	Type Inference
	Scalar, Compound, and Custom Types
	Rust Never Type and Unit Type
	Rust Boolean Type
	Rust Integer Types
	Integer Overflow in Rust
	Rust Floating Point Types
	Rust Characters
	Compound Types
	Compound Types — Arrays
	Custom Types
	Rust Variables
	Example
	Shadowing
	Shadowing

