
Energy-Aware real-time task partitioning
Parallel or Sequential?

Houssam-Eddine ZAHAF
houssam.zahaf@unimore.it

HiPeRT Lab, University of Modena and Reggio Emillia

OSPM, Pisa, 18-20/03/2018

houssam.zahaf@unimore.it

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

2 of 30

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

3 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introduction: partitionned scheduling, parallelization

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

τ3

τ1

4 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Introducton: partitioned parallel EDF

• Let assume 3 tasks to allocate onto 2 cores.

• Scheduling policy: Earliest Deadline First.

• Allocation: τ1, τ3 ⇒ Yellow core, τ2 ⇒ Blue core

• “Allocate” 2 time units from τ3 onto blue core

τ2

Th3,1
Th3,2

τ1

5 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

Th{1, 2, 3}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

Th{1, 2, 3}

Slack Time

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 1

minimum slack time

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.75

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.75

less slack time

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.50

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Parallelization and frequency selection

Let τ be a task that can be decomposed into 3 threads
Th1,Th2,Th3, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.35

Unfeasible

Th{3}

Th{1, 2}

Power ∝ Frequency3

6 of 30

Problem

Real-time

constraints

F
req

u
en

cy

P
arallelization

Energy

Consumption

This presentation:

• How frequency, time and energy interfere between each other.

• From analysis to implementation

• Code generation for parallel real-time tasks

7 of 30

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

8 of 30

Time, power and energy on Arm big.LITTLE

• Goal: Build time and energy models
◦ Executing different tasks on Xynos 5422.
◦ With real-time priorities and under Linux

512 ko of L2-Cache

ARM Cortex-A15

2× 32ko cache L1

ARM Cortex-A15

2× 32ko cache L1

ARM Cortex-A15

2× 32ko cache L1

ARM Cortex-A15

2× 32ko cache L1

2Mo of L2-Cache

ARM Cortex-A7

2× 32ko cache L1

ARM Cortex-A7

2× 32ko cache L1

ARM Cortex-A7

2× 32ko cache L1

ARM Cortex-A7

2× 32ko cache L1

2GO of RAM Memory

G
P
U

Power, Current sensor

9 of 30

Experimentation Settings

• Modified from mi-bench: Matrix Multiplication, Basic Math
Operations, Dijkstra, Quick Sort, Susan-C, Fourier
Transformations.

• Using real-time priorities, SCHED FIFO, each task is run for 1000
times.

• Modifying data size, task affinity, core frequency and core state.

• Measure the execution time, each core group power, total power.

• The modified benchmark is available on:
https://houssam.univ-lille1.fr/mi_bench_m.tar.gz

10 of 30

https://houssam.univ-lille1.fr/mi_bench_m.tar.gz

Time model

• One thread on one little core

200 400 600 800 1,000 1,200 1,400
0

0.5

1

1.5

2

2.5

Frequency (Mhz)

E
xe

cu
ti

o
n

ti
m

e

MatMul
BasicMath
Dijkistra

QuickSort
Susan
FFT

• Execution time is a function of the task code and the frequency

• Non linear regression: C(fop) = Const1

fop
+ Const2

11 of 30

Time model

• One thread on one little core

200 400 600 800 1,000 1,200 1,400
0

0.5

1

1.5

2

2.5

Frequency (Mhz)

E
xe

cu
ti

o
n

ti
m

e

MatMul
BasicMath
Dijkistra

QuickSort
Susan
FFT

• Execution time is a function of the task code and the frequency

• Non linear regression: C(fop) = Const1

fop
+ Const2

11 of 30

Execution time model

• Changing the processed data
size

C(fop) =
Const1

fop
+ Const2

1,200 1,300 1,400 1,500 1,600 1,700 1,800
0

0.5

1

1.5

2

·10−2

RSS (Ko)

T
em

p
s

(s
)

Const2-B
Const2-L

• Const2 represent the memory access under test conditions

12 of 30

Power model

• One thread per core

200 400 600 800 1,000 1,200 1,400

5 · 10−2

0.1

0.15

0.2

0.25

0.3

Frequency (Mhz)

P
ow

er
(w

)

BM
Dijkstra

FFT
MatMul

QS
Susan-c

• Power dissipation depends on the task

13 of 30

Power model: Regression and real values

• 3rd degree regression is applied.

• Regression is exact

200 400 600 800 1,000 1,200 1,400
0

0.1

0.2

0.3

0.4

0.5

Frequency (Mhz)

P
ow

er
(W

)

Rg-MM-1
Rg-MM-2
Rg-MM-3

Real-MM-1
Real-MM-2
Real-MM-3

• Power dissipated by two (2) threads is not equal to twice (×2) the
power dissipation of one thread.

14 of 30

Power dissipation: the memory

• The power dissipated by the
memory of same processing: Little
>> Big cores.

◦ Smaller Cache-L2 ⇒ More
cache-miss ⇒ More memory.access

• Memory power can reach more
than 20% of a little core power
(constant).

500 1,000 1,500 2,000
0

2

4

6

8
·10−2

Frequency (Mhz)

P
ow

er
(w

)

Little core
Big core

15 of 30

Energy model

500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Frequency (Mhz)

E
n

er
gy

(W
h

)

FFT-L
FFT-B
MM-L
MM-B

• Raising the frequency “can” help to reduce the energy
consumption until effective frequency.

• Effective frequency is task dependent.
16 of 30

What to remember

Power dissipation depends on:

• The core type (micro architecture) where the thread is allocated

• The operating frequency of the core

• The task itself

Hints:

• Two threads of the same task dissipate the same power (not
energy)

• Static energy depends on the voltage which may depend on the
frequency.

• Memory energy consumption is important.

• Effective frequency depends on a the task itself.

17 of 30

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

18 of 30

How analysis work: Introduction

#include <stdlib.h>

#include <stdio.h>

void main(){

main_th1:{

a: {

printf("Some initialization 1 \n");

rt_1:

printf("Real time processing 1 \n");

}

b:{

printf("Some initizalition 2\n");

rt_2:

printf("Real time processing 2 \n");

}

}

}

begin processing: main th1
T = 200
D = 100
label = init
begin processing: a
C = 21
label=init
begin processing: rt 1
label : rt
end processing: rt 1
end processing: a
begin processing: b
C = 21
label=init
begin processing: rt 2
label : rt
end processing: rt 2
end processing: b
end processing: main th1

19 of 30

How it works: Input & Output

Inputs

• Real time inputs: Deadline, Period, execution time for each thread,
etc.

• Parallelization inputs: The finest parallelization granularity.

• Energy coefficients for one parallel section

Outputs

• Define the allocation of each thread to each core (source code)

• Select the operating frequency of core groups and core states

20 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1,∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: task model

γi ,1

γi ,2

γi ,3

Di = Ti = 10

C(fop) =
Const1

fop
+ Const2

• Execution time of each thread

•
∑

z Ci ,k,z ≥ Ci ,1,1, ∀i , k
• ~ε an array of power dissipation coefficients.

21 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6

C=5C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6

C=5C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6

C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6

C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (1/2)

• Define the maximum execution time that
can be allocated on the current core

• Example: Th1,Th2 are two threads
allocated on the same core. We try to
allocate τ on the same core

• Merge the threads that are meant to run
onto the same cores

Di = Ti

Threads allocated on current core

C=6C=5

C=4

τ

Th2

Th1

22 of 30

Analysis: partitioning (2/2)

1. Select a task and core

2. Test the feasibility of all threads on the same core

3. If feasible allocate all threads on the same core

4. Else: Compute excess
4.1 if excess is between 0 and the task sequential execution

• split and allocate only a sub-task

4.2 Else: select an other core

5. if all core are investigated, abort scheduling

References

- Zahaf, Lipari ”Energy-efficient scheduling for moldable real-time tasks on
heterogeneous computing platforms” , Journal of Systems Architecture, 2017

- H.E. Zahaf, A.E Benyamina , R. Olejnik, G. Lipari, Pierre Boulet ”Modeling parallel
task with Di-Graphs” , RTNS’2016, Brest France

23 of 30

Example (1/3)

#include <stdlib.h>

#include <stdio.h>

void main(){

main_th1:{

a: {

printf("Some initialization 1 \n");

rt_1:

printf("Real time processing 1 \n");

}

b:{

printf("Some initizalition 2\n");

rt_2:

printf("Real time processing 2 \n");

}

}

}

begin processing: main th1
T = 200
D = 100
label = init
begin processing: a
C = 21
label=init
begin processing: rt 1
label : rt
end processing: rt 1
end processing: a
begin processing: b
C = 21
label=init
begin processing: rt 2
label : rt
end processing: rt 2
end processing: b
end processing: main th1

24 of 30

Example (2/3): 2 threads on 2 cores

void * main_th1_a(void *arg){

// real-time setting times

struct periodique *cp = (struct periodique *) arg;

struct timespec Begin,END;

struct timespec T = ms_tospec(cp->periode);

struct timespec D = ms_tospec(cp->deadline);

int cond=1;

int MissedDeadlines = 0 ;

// affinity setting

int cpu = 0;

cpu_set_t cpuset;

CPU_ZERO(&cpuset);

CPU_SET(cpu , &cpuset);

sched_setaffinity(0, sizeof(cpuset), &cpuset);

// user init

printf("Some initialization 1 \n");

while(cond){

// included header

clock_gettime(CLOCK_REALTIME, &Begin);

struct timespec NA = timespec_add(&Begin,&T);

struct timespec Dij= timespec_add(&Begin,&D);

// The real-time processing

printf("Real time processing 1 \n");

// included footer

clock_gettime(CLOCK_REALTIME, &End);

clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &NA, NULL);

}

}

void * main_th1_a(void *arg){

// real-time setting times

struct periodique *cp = (struct periodique *) arg;

struct timespec Begin,End;

struct timespec T = ms_tospec(cp->periode);

struct timespec D = ms_tospec(cp->deadline);

int cond=1;

int MissedDeadlines = 0 ;

// affinity setting

int cpu = 1;

cpu_set_t cpuset;

CPU_ZERO(&cpuset);

CPU_SET(cpu , &cpuset);

sched_setaffinity(0, sizeof(cpuset), &cpuset);

// user init

printf("Some initialization 2 \n");

while(cond){

// included header

clock_gettime(CLOCK_REALTIME, &Begin);

struct timespec NA = timespec_add(&Begin,&T);

struct timespec Dij= timespec_add(&Begin,&D);

// The real-time processing

printf("Real time processing 2 \n");

// included footer

clock_gettime(CLOCK_REALTIME, &End);

clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &NA, NULL);

}

}25 of 30

Example (2/3): 2 threads on 1 core

void * main_th1_a(void *arg){

// real-time setting times

...

// user init

printf("Some initialization 1 \n");

printf("Some initialization 2 \n");

while(cond){

// included header

...

// The real-time processing

printf("Real time processing 1 \n");

printf("Real time processing 2 \n");

// included footer

...

}

}

26 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin

fgeff
fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin

fgeff
fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff

fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)

f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)

f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgop

fgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Frequency selection

• Operating frequency is selected between minimal effective
frequency and max. frequency.

• Computing strength is defined as:
fgop

fmax
nb

fgmaxfgmin fgeff
fgopfgbegin

mgU(fgmax)
f
g
op

fmax
nb

27 of 30

Platform

The platform allows :

• Synchronize threads on different cores wake up (more accuracy)

• Using SCHED DEADLINE with budget C/Ti

• User may select options in code generation

• Allow variable sharing (but not taken into account in analysis)

• Allow to implicitly parallelize iteration-independent for loops

28 of 30

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

29 of 30

Conclusions and future work

Conclusions

• Parallelization can help to achieve better feasibility and energy
efficiency

• Better to go sequential when feasible

• Selected frequency very low → pack tasks and turn off cores

Open questions

• How to adapt frequency selection when running tasks with
different profiles?

30 of 30

	Parallelization in real-time systems
	Time and energy models
	From analysis to implementation
	Conclusions and future work

