Energy-Aware real-time task partitioning

Parallel or Sequential?

Houssam-Eddine ZAHAF

houssam.zahaf@unimore.it

HiPeRT Lab, University of Modena and Reggio Emillia

OSPM, Pisa, 18-20/03/2018

houssam.zahaf@unimore.it

Plan

Parallelization in real-time systems

Time and energy models

From analysis to implementation

Conclusions and future work

2 of 30

Plan

Parallelization in real-time systems

3 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

8 I | | | I |
£ | |
& | |

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

1 N N O

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

O | | |
72_ l _ l
| |

73

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

S |
72_ l _ l
73 . ‘ l

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

S| | N | I |

73

4 of 30

Introduction: partitionned scheduling, parallelization

o Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.

e Allocation: 71,73 = Yellow core, 7 = Blue core

Tlﬁ” FF‘ FL—U
72_ l _ l

4 of 30

Introduction: partitionned scheduling, parallelization

e Let assume 3 tasks to allocate onto 2 cores.
e Scheduling policy: Earliest Deadline First.
e Allocation: 71,73 = Yellow core, 7 = Blue core

e “Allocate” 2 time units from 73 onto blue core

Tlﬁ” FF‘ FL—U
72_ l _ l
o M

73

4 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

S | | |

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

S | | |

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

e “Allocate” 2 time units from 73 onto blue core

]

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

e “Allocate” 2 time units from 73 onto blue core

]

S

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

e “Allocate” 2 time units from 73 onto blue core

]

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

= | |
2 — ‘ ‘ — ‘
T | = |

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

el (L] \
2 — ‘ ‘ I ‘
o |

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

1 H ’ H
T | m |

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

71 H H
m | e

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

71 H H

owm |
Th3

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

71 H H

owm |
Th3

5 of 30

Introducton: partitioned parallel EDF

o Let assume 3 tasks to allocate onto 2 cores.

Scheduling policy: Earliest Deadline First.

Allocation: 71,73 = Yellow core, 75 = Blue core

“Allocate” 2 time units from 73 onto blue core

71 H H ‘

owm |
Th3

5 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Th{1,2,3}f | I | I

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Th{1,2,3}f L. | I | I

Slack Time

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Th{:«;}I

Th{1,2}

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Th{:«;}I

Th{1,2} |

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s =1

Th{:«;}I

Th{1,2}h | /

e

minimum“slack time

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.75

Th{:«;}I

Th{1,2} |

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.75

Th{:«;}I

Th{1,2}I | /

less slack4

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.50

Th{:«;}I

Th{1,2}

Power o< Frequency?

6 of 30

Parallelization and frequency selection

Let 7 be a task that can be decomposed into 3 threads
Th1, Thy, Ths, with the execution times 2,2,5 respectively on a
platform operating at speed s = 0.35

Th{:«;}I

Th{1,2}I h

Unfeasible

Power o< Frequency?

6 of 30

Problem

Energy

. Consumption
Real-time

constraints

This presentation:
e How frequency, time and energy interfere between each other.
e From analysis to implementation

e Code generation for parallel real-time tasks

7 of 30

Plan

Time and energy models

8 of 30

Time, power and energy on Arm big.LITTLE

e Goal: Build time and energy models

o Executing different tasks on Xynos 5422.
o With real-time priorities and under Linux

J 2GO of RAM Memory
‘ 2Mo of L2-Cache ‘ ‘ 512 ko of L2-Cache ‘
Comoni]| |omeand] Comoni]| |meamn]
o]
% ARM Cortex-A15 ARM Cortex-A15 ARM Cortex-A7 ARM Cortex-A7
Cmani] | | Eomany] Fmani]| |[Eomani]
ARM Cortex-A15| |ARM Cortex-A15| ARM Cortex-A7| | ARM Cortex-A7

[Power, Current sensor

9 of 30

Experimentation Settings

e Modified from mi-bench: Matrix Multiplication, Basic Math
Operations, Dijkstra, Quick Sort, Susan-C, Fourier
Transformations.

e Using real-time priorities, SCHED_FIFO, each task is run for 1000
times.

e Modifying data size, task affinity, core frequency and core state.
e Measure the execution time, each core group power, total power.

e The modified benchmark is available on:
https://houssam.univ-1illel.fr/mi_bench_m.tar.gz

10 of 30
EEEEE————————————————————————

https://houssam.univ-lille1.fr/mi_bench_m.tar.gz

Time model
254
—— MatMul
—m— BasicMath
2y —eo— Dijkistra
) —— QuickSort
-§1_5 il —+— Susan
5 -e- FFT
5
e One thread on one little core § 1
w
0.5

0 |
200 400 600 800 1,000 1,200 1,400
Frequency (Mhz)

11 of 30
EEEEE————————————————————————

Time model
254
—— MatMul
—m— BasicMath
2y —eo— Dijkistra
) —— QuickSort
-§1_5 il —+— Susan
5 -e- FFT
5
e One thread on one little core § 1
w
0.5

0 : : : : : |
200 400 600 800 1,000 1,200 1,400
Frequency (Mhz)

® Execution time is a function of the task code and the frequency
e Non linear regression: C(fop) = % + Const,
op
11 of 30
EEEEE————————————————————————

Execution time model

e Changing the processed data
size

C(fOP) =

Const;

+ Consty
fop 05 —eo— Const>-B

—m— Consty-L

1,200 1,300 1,400 1,500 1,600 1,700 1,800
RSS (Ko)

e Const, represent the memory access under test conditions

12 of 30
EEEEE————————————————————————

Power model

—eo— BM
. 03 —a— Dijkstra
2 —— FFT
5 027 — MatMul
nc;z —— QS
0.2 -o-Susan-c
e One thread per core 0.15 1
0.17¢
5.1072 ¢

200 400 600 800 1,000 1,200 1,400
Frequency (Mhz)

e Power dissipation depends on the task

13 of 30

Power model: Regression and real values

[]
| |— Rg-MM-1
,,0'5 — Rg-MM-2 »
Rg-MM-3
0.4 —— Real-MM-1)
(0]
g —+— Real-MM-2 °
8031 | e Real-MM-3

e 37 degree regression is applied.

S 0.2
e Regression is exact

200 400 600 800 1,000 1,200 1,4C
Frequency (Mhz)

e Power dissipated by two (2) threads is not equal to twice (x2) the
power dissipation of one thread.

14 of 30

Power dissipation: the memory

1072
e The power dissipated by the z 61
memory of same processing: Little %
>> Big cores. o
4 1
o Smaller Cache-L2 = More
cache-miss = More memory.access —e— Little core
1 —=— Big core
e Memory power can reach more 2 £
than 20% of a little core power

(constant). 0 : : : :
500 1,000 1,500 2,0(
Frequency (Mhz)

15 of 30

Energy model

0.8

0.6

0.4

Energy (Wh)

0.2 T

500 1,000 1,500 2,000
Frequency (Mhz)

e Raising the frequency “can” help to reduce the energy
consumption until effective frequency.

e Effective frequency is task dependent.
16 of 30

What to remember

Power dissipation depends on:

e The core type (micro architecture) where the thread is allocated
e The operating frequency of the core
e The task itself

Hints:
e Two threads of the same task dissipate the same power (not

energy)

e Static energy depends on the voltage which may depend on the
frequency.

e Memory energy consumption is important.

e Effective frequency depends on a the task itself.
17 of 30

Plan

From analysis to implementation

18 of 30
EEEEE————————————————————————

How analysis work: Introduction

#include <stdlib.h>
#include <stdio.h>
void main(){

main_thi:{
a: {
printf("Some initialization 1 \n");
rt_1:
printf ("Real time processing 1 \n");
}
b:{
printf ("Some initizalition 2\n");
rt_2:
printf("Real time processing 2 \n");
}
¥
}
19 of 30

begin processing: main_thl
T = 200

D = 100

label = init

begin processing: a
c=21

label=init

begin processing: rt_1
label : rt

end processing: rt_1

end processing: a

begin processing: b
c=21

label=init

begin processing: rt_2
label : rt

end processing: rt_2

end processing: b

end processing: main_thl

How it works: Input & Output

Inputs

e Real time inputs: Deadline, Period, execution time for each thread,
etc.

e Parallelization inputs: The finest parallelization granularity.
e Energy coefficients for one parallel section
Outputs

e Define the allocation of each thread to each core (source code)

e Select the operating frequency of core groups and core states

20 of 30

Analysis: task model

21 of 30
EEEEE————————————————————————

Analysis: task model

Const;

C(fop) = + Consty

op

21 of 30
EEEEE————————————————————————

Analysis: task model

Const;

C(fop) = + Consty

op

21 of 30
EEEEE————————————————————————

Analysis: task model

C(fop) = C(:nstl + Consty

op

21 of 30
EEEEE————————————————————————

Analysis: task model

C(fop) = C(:nstl + Consty

op

21 of 30
EEEEE————————————————————————

Analysis: task model

i1

C(fop) = C(:nstl + Consty

op

21 of 30
EEEEE————————————————————————

Analysis: task model

i1

Const
T C(fop) = ‘;"s L+ Const,

op

21 of 30
EEEEE————————————————————————

Analysis: task model

il
Const;
e C(fop) = + Consts
fop
i3

21 of 30
EEEEE————————————————————————

Analysis: task model

il
Const;
Vi C(fop) = + Consts
op
i3

e Execution time of each thread
® ZZ Ci,k,z > Ci,l,laViv k
e ¢ an array of power dissipation coefficients.

21 of 30
EEEEE————————————————————————

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores]] ‘

Thy y

Thy

22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores

Thy

Thy]

22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run

T e]
| |

C=6

Thy

22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run

onto the same cores u»] J ‘
| em
QEE— SR —

C=6

Thy

Thy

22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run

onto the same cores k }]

Thy y

Thy

C=5
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores

o S | B VS | e |

Thy y

C=5
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core

e Example: Thy, Th, are two threads
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores

Thy

Thy y

=4
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core x

e Example: Thy, Th, are two threads |
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores

Thy

Thy y

=4
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core x

e Example: Thy, Th, are two threads |
allocated on the same core. We try to
allocate 7 on the same core

e Merge the threads that are meant to run
onto the same cores

Thy

Thy y

=4
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core x

e Example: Thy, Th, are two threads
allocated on the same core. We try to v
allocate 7 on the same core

e Merge the threads that are meant to run

onto the same cores Threads allocated on current core

Thy

Thy y

=4
22 of 30

Analysis: partitioning (1/2)

e Define the maximum execution time that
can be allocated on the current core x

e Example: Thy, Th, are two threads
allocated on the same core. We try to v
allocate 7 on the same core ,

e Merge the threads that are meant to run

onto the same cores Threads allocated on current core

Thy

Thy y

=4
22 of 30

Analysis: partitioning (2/2)

. Select a task and core
. Test the feasibility of all threads on the same core

. If feasible allocate all threads on the same core

A W N =

. Else: Compute excess

4.1 if excess is between 0 and the task sequential execution
e split and allocate only a sub-task

4.2 Else: select an other core

5. if all core are investigated, abort scheduling

References

- Zahaf, Lipari " Energy-efficient scheduling for moldable real-time tasks on
heterogeneous computing platforms” , Journal of Systems Architecture, 2017

- H.E. Zahaf, A.E Benyamina , R. Olejnik, G. Lipari, Pierre Boulet "Modeling parallel
task with Di-Graphs” , RTNS'2016, Brest France

23 of 30

Example (1/3)

#include <stdlib.h>
#include <stdio.h>
void main(){

main_thi:{
a: {
printf("Some initialization 1 \n");
rt_1:
printf ("Real time processing 1 \n");
}
b:{
printf("Some initizalition 2\n");
rt_2:
printf("Real time processing 2 \n");
}
¥
}

24 of 30

begin processing: main_thl
T = 200

D = 100

label = init

begin processing: a
c=21

label=init

begin processing: rt_1
label : rt

end processing: rt_1

end processing: a

begin processing: b
c=21

label=init

begin processing: rt_2
label : rt

end processing: rt_2

end processing: b

end processing: main_thl

Example (2/3): 2 threads on 2 cores

void * main_thil_a(void *arg){ void * main_thl_a(void *arg){
// real-time setting times // real-time setting times
struct periodique *cp = (struct periodique *) arg; struct periodique *cp = (struct periodique *) arg;
struct timespec Begin,END; struct timespec Begin,End;
struct timespec T = ms_tospec(cp->periode); struct timespec T = ms_tospec(cp->periode);
struct timespec D = ms_tospec(cp->deadline); struct timespec D = ms_tospec(cp->deadline);
int cond=1; int cond=1;
int MissedDeadlines = 0 ; int MissedDeadlines = 0 ;
// affinity setting // affinity setting
int cpu = 0; int cpu = 1;
cpu_set_t cpuset; cpu_set_t cpuset;
CPU_ZERO(&cpuset) ; CPU_ZERO (&cpuset) ;
CPU_SET(cpu , &cpuset); CPU_SET(cpu , &cpuset);
sched_setaffinity(0, sizeof(cpuset), &cpuset); sched_setaffinity(0, sizeof(cpuset), &cpuset);
// user init // user init
printf("Some initialization 1 \n"); printf("Some initialization 2 \n");
while(cond){ while(cond){
// included header // included header
clock_gettime (CLOCK_REALTIME, &Begin); clock_gettime (CLOCK_REALTIME, &Begin);
struct timespec NA = timespec_add(&Begin,&T); struct timespec NA = timespec_add(&Begin,&T);
struct timespec Dij= timespec_add(&Begin,&D); struct timespec Dij= timespec_add(&Begin,&D);
// The real-time processing // The real-time processing
printf("Real time processing 1 \n"); printf("Real time processing 2 \n");
// included footer // included footer
clock_gettime (CLOCK_REALTIME, &End); clock_gettime (CLOCK_REALTIME, &End);
clock_nanosleep (CLOCK_REALTIME, clock_nanosleep (CLOCK_REALTIME,
TIMER_ABSTIME, &NA, NULL); TIMER_ABSTIME, &NA, NULL);
s }
} 25 of 30 ks

Example (2/3): 2 threads on 1 core

void * main_thl_a(void *arg){
// real-time setting times

// user init
printf("Some initialization 1 \n");
printf("Some initialization 2 \n");
while(cond){

// included header

// The real-time processing
printf("Real time processing 1 \n");
printf("Real time processing 2 \n");
// included footer

}
}

26 of 30

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

v

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

g g
fmin fmax

]] N
| | ’

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

g g
fmin fmax

] | N
| | ’

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

4 g g
fm in feff fmax

] | | N
| | | ’

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

g 4 g g
fm in 1:e’rT fOP f
| | | | N
| | | | i

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

g 4 g g
fm in 1:e’rT fOP f
| | | | N
| | | | i

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

frin fer 6 ff
| | | |
1 | | |

v

v

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

friin ffff fgp f§1ax
| | | | N
| | | | i
U(fr%ax) Mg

—
v

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

friin ffff fgp fl%'nax
| | | | N
| | | | i
U(fr%ax) Mg

—
v

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

g 4 g g
fmin 1:e’r'F fOP fmax
| | | | N
| | | | i
fg
U(fr%ax) ﬁn b Mg
| |

—
v

27 of 30
EEEEE————————————————————————

Frequency selection

e Operating frequency is selected between minimal effective
frequency and max. frequency.

g
e Computing strength is defined as: ft:—a”xnb

ff“n 1:eff fbegln fgp f8

v

U(fr%ax) ffinb Mg
ey |

—
v

27 of 30
EEEEE————————————————————————

Platform

The platform allows :

Synchronize threads on different cores wake up (more accuracy)
Using SCHED_DEADLINE with budget C/T;

e User may select options in code generation

Allow variable sharing (but not taken into account in analysis)

Allow to implicitly parallelize iteration-independent for loops

28 of 30
EEEEE————————————————————————

Plan

Conclusions and future work

29 of 30
EEEEE————————————————————————

Conclusions and future work

Conclusions

e Parallelization can help to achieve better feasibility and energy
efficiency
e Better to go sequential when feasible

e Selected frequency very low — pack tasks and turn off cores

Open questions

e How to adapt frequency selection when running tasks with
different profiles?

30 of 30

	Parallelization in real-time systems
	Time and energy models
	From analysis to implementation
	Conclusions and future work

