
LEADING 
COLLABORATION 

IN THE ARM 
ECOSYSTEM

Scaling interconnect bus
Georgi Djakov / Vincent Guittot

OSPM 2018 - Pisa



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

Agenda
● Some background

● The problem

● Current status

● Discussion on open issues



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

● ARM SoC architecture becomes more complex

○More and more features (IP cores)

○Many components talking to each other

○Multiple sources of traffic

○Concurrent transfers

○Predictability (many interrupts, DDR utilisation)

●Evolution of on-chip interconnects
○Buses, crossbars

●Network-On-Chip (NoC)
○Packet transport protocol - scalability

○Shorter wires - power efficiency

○QoS, load balancing

Some background



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

An example topology



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

An example topology



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

●On-chip interconnect buses can handle high throughput data transfers, but most 

of the time they may be idle.

●Simultaneous data flows across the SoC with different sources and destinations, 

interleaved traffic.

●Interconnect buses can be configured according to the use-case and demand.

●Each SoC vendor has its own custom implementation in downstream kernels.

●Need a common solution in the upstream Linux kernel.

On-Chip interconnects and Linux



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

●Interconnect framework
○re-configure the hardware dynamically according the use-case

●Interconnect providers
○contains the topology

○vendor specific implementation for set() and aggregate()

●Interconnect consumers
○use get/set/put API functions

Current status



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

Register interconnect topology from a SoC platform driver.

● int icc_provider_add(struct icc_provider *provider);

● struct icc_node *icc_node_add(int id);

● int icc_link_create(struct icc_node *node, const int dst_id);

● int icc_provider_del(struct icc_provider *provider);

Provider API



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

Consumer drivers express their bandwidth needs.

● struct icc_path *icc_get(const int src_id, const int dst_id);

● struct icc_path *of_icc_get(struct device *dev, const char *name);

● int icc_set(struct icc_path *path, u32 avg_bw, u32 peak_bw);

● void icc_put(struct icc_path *path);

Consumer API



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

● Consumer might not know its bandwidth needs

● SoC specific predefined bandwidth values for paths, device idle states

● Active/sleep sets on Qualcomm platforms

● Extend boot constraints patchset by Viresh for interconnects?

● Merge path

Discussion on open issues



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

Active set / Sleep set

RPM

Linux

Modem DSP NPU

WiFi

Resources Active Set Sleep Set Active* Sleep*

Resource A 100 MHz 0 MHz 100 MHz 0 MHz

Resource B 1000 mV [no request] 1000 mV 1000 mV

Resource C [no request] [no request] [off] [off]



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

First consumer vote

Linux kernel boot

UART probe

Display probe

GPU probe

VDEC probe



LEADING COLLABORATION 
IN THE ARM ECOSYSTEM

Thanks!


