
© 2018 Arm Limited

Experimenting with the

Android Audio Pipeline and

SCHED_DEADLINE
OSPM 2018

Alessio Balsini - Arm, Scuola Superiore Sant’Anna
With the contribution of:

Joel Fernandes and Phil Burk - Google

© 2018 Arm Limited

© 2018 Arm Limited

Software Architecture: Audio Pipeline Simplified

int fillAudioBuffer(float buff[],
 int32_t size)
{
 int32_t i;
 for (i=0; i<size; ++i)
 buff[i] = nextAudioSample();
 return CONTINUE;
}

Buffer
k * Burst, k is dynamic

Burst
64 samples

do {
 lastBurst = waitForEmptyBurst();
 ret = fillAudioBuffer(lastBurst,
 BURST_SIZE);
 write(lastBurst);
} while (ret == CONTINUE);

-+

48’000 sample/s

SCHED_*

ALSA

2

© 2018 Arm Limited

Software Architecture: Audio Pipeline Simplified

int fillAudioBuffer(float buff[],
 int32_t size)
{
 int32_t i;
 for (i=0; i<size; ++i)
 buff[i] = nextAudioSample();
 return CONTINUE;
}

Buffer
k * Burst, k is dynamic

Burst
64 samples

do {
 lastBurst = waitForEmptyBurst();
 ret = fillAudioBuffer(lastBurst,
 BURST_SIZE);
 write(lastBurst);
} while (ret == CONTINUE);

-+

48’000 sample/s

1 sample every ~20.8 us

1 burst every ~1.33 ms

SCHED_*

ALSA

3

© 2018 Arm Limited

Requirements
Power efficient

- Forcing the maximum frequency is not always good (e.g., power consumption, thermal

throttling, current pumping), how to find the smallest, but sufficient OPP?

Low-latency

- Best-effort scheduling may result in underruns/overruns: audio glitches
- The buffer must be full, so, the bigger the buffer, the bigger the latency

Reactive to workload changes

- The workload of an audio varies a lot (e.g., different number of notes), so
load increase → quick CPU frequency increase!

4

© 2018 Arm Limited

Alternative Solutions

Power
Efficiency

Reactiveness
to Workload Latency

SCHED_{RT, DL}
max frequency (*) ?

SCHED_RT,
WALT or PELT (**)

SCHED_DL
adaptive BW

(**) With not (yet) mainline solutions, reactiveness and latency can be mitigated, but it’s still required to
specify from userspace either the utilization or frequency clamping mechanisms.

(*) Race to Idle?

5

© 2018 Arm Limited

SCHED_DEADLINE is good because:

- Fits periodic tasks
- Tailored for deadline tasks

How to choose the parameters?

1. The callback is activated every time a
burst is available (period = 1.33 ms)

2. A burst must be filled before another is
consumed (deadline = 1.33 ms)

3. The runtime is unknown! But we have
past execution statistics and the
application can hint the system
(adaptive loop)

SCHED_DEADLINE with Adaptive Bandwidth
int fillAudioBuffer(float buff[],
 int32_t size)
{
 int32_t i;
 for (i=0; i<size; ++i)
 buff[i] = genNextAudioSample();
 return CONTINUE;
}

setAppWorkUnits(WU_new);

void setAppWorkUnits(WU_new) {
 /* estimate runtime and *
 * do sched_setattr(...) */
}

do {
 lastBurst = waitForEmptyBurst();
 ret = fillAudioBuffer(lastBurst,
 BURST_SIZE);
 updateRuntimeStatistics(WU_curr);
 write(lastBurst)
} while (ret == CONTINUE);

6

© 2018 Arm Limited

Experimental Setup
- Device: fake battery Google Pixel 2
- Android: AOSP, version P (master of)
- Kernel: MSM walleye 4.4 with latest mainline (and not) DL patches

(android.googlesource.com/kernel/msm)

- Power meter: ACME Cape RevB
- Workload generator: audio synthesizer emulator, that generates audio

workload and stores statistics (github.com/google/synthmark)
- Test automation toolkit: LISA (github.com/ARM-software/lisa)

The experiments are run on big CPUs

7

© 2018 Arm Limited

Experimental Results: Notes Switching
walleye:/ # /data/synthmark -s60 -tl -n5 -N140 -Rs

--- SynthMark V1.12 ---
 test name = LatencyMark
 numVoices = 5
 numVoicesHigh = 140
 framesPerBurst = 64
 msecPerBurst = 1.33

Latency is 128 frames = 2.66667 msec at burst size 64 frames
walleye:/ # _

8

Time to generate one audio burst
(histogram)

Audio Latency

Notes
played

Predicted
runtime

Measured
runtime

CPU
frequency

Power
consumption

© 2018 Arm Limited

Experimental Results: Notes Switching
walleye:/ # /data/synthmark -s60 -tl -n5 -N140 -Rs

--- SynthMark V1.12 ---
 test name = LatencyMark
 numVoices = 5
 numVoicesHigh = 140
 framesPerBurst = 64
 msecPerBurst = 1.33

Latency is 128 frames = 2.66667 msec at burst size 64 frames
walleye:/ # _

9

© 2018 Arm Limited

Experimental Results: Linear Increment
walleye:/ # /data/synthmark -s60 -tl -n5 -N140 -Rl

--- SynthMark V1.12 ---
 test name = LatencyMark
 numVoices = 5
 numVoicesHigh = 140
 framesPerBurst = 64
 msecPerBurst = 1.33

Latency is 128 frames = 2.66667 msec at burst size 64 frames
walleye:/ # _

10

© 2018 Arm Limited

Experimental Results: Random
walleye:/ # /data/synthmark -s60 -tl -n5 -N140 -Rr

--- SynthMark V1.12 ---
 test name = LatencyMark
 numVoices = 5
 numVoicesHigh = 140
 framesPerBurst = 64
 msecPerBurst = 1.33

Latency is 128 frames = 2.66667 msec at burst size 64 frames
walleye:/ # _

11

© 2018 Arm Limited

To Race or not to Race (to Idle)?

Odroid XU3 board (Samsung Exynos-5422)

Fˀɛʿ˙ɛʖɑ˵ Fˀɛʿ˙ɛʖɑ˵

P
ow

er

Race to Idle GRUB-PA

12

With “old” processors (Exynos-5422) is better not
to waste power doing nothing.

On Pixel 2 (Qualcomm Snapdragon 835), the clock
gating is very efficient → race to idle is fine.

So? Device specific!

© 2018 Arm Limited

Needs
Android ⇆ App

- App → Android: API to notify that the App load is changing (to update of the DL parameters ASAP)
- Android/Kernel → App: API to notify the App of the available system capacity

Android ⇆ Kernel

- API to measure the execution time (a kind of se.sum_exec_runtime), frequency + capacity scaled.
In this project implemented with custom sched_getattr() flag: returns dl_se.runtime.
What about CLOCK_THREAD_CPUTIME_SCALED_ID, accessible with clock_gettime()?

Kernel

- Capacity-aware scheduling: migrate to a big CPU if its requirements do not fit the LITTLE

13

© 2018 Arm Limited

Other Ideas
Export the available DL bandwidth

- Not blindly ask the admission controller
- Some applications can adapt their workload according to the system availability

The period of the task is not the period of CBS: synchronization callback!

- Maybe with a new flag for sched_setattr()

Multilevel SCHED_DEADLINE

- Split SCHED_DL into soft vs hard deadline tasks, the bandwidth is guaranteed
only to hard tasks, best effort for the others (but still deadline based)

14

© 2018 Arm Limited
© 2018 Arm Limited

Thank you!

Alessio Balsini - Arm, Scuola Superiore Sant’Anna
alessio.balsini@{arm.com, santannapisa.it}

With the contribution of:

Joel Fernandes and Phil Burk - Google

© 2018 Arm Limited

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2018 Arm Limited

