
Cluster Idle
- Now and next
Ulf Hansson, Linaro
ulf.hansson@linaro.org

OSPM Summit
2019

Agenda
● Current status.

● Deployment for ARM/ARM64 via PSCI.

● Future improvements.

CPU Topology

CPU CPU

CPUCPU

Cache

CoreSight

CPU CPU

CPUCPU

Cache

Cache

CPUs and other resources sharing idle states
- doesn’t always fit with the CPUIdle framework.

The problem
● Last-man activities needs to be synchronized by Linux.

○ Configure external logics for wakeups, decouple the GIC, etc.
○ Communicate sleep states of devices to FW.

● A power-rail for a group of CPUs may be shared.
○ A controller needs the power-rail on - to complete I/O.
○ Platform configurable.

Current status
Infrastructure needed - done
● Use genpd to model the topology via DT.
● Extend genpd to support CPU devices.
● Add a genpd governor targeted for a group of CPUs.
● Continue to use CPUIdle to select idle states per CPU.

Deployment for PSCI - reviewing
● Update DT bindings for PSCI to support a hierarchical CPU topology.
● Deploy genpd and runtime PM support for PSCI.
● Enable platform support for Hisilicon Hikey and Qcom 410c.

[PATCH 00/18] ARM/ARM64: Support hierarchical CPU arrangement for PSCI
https://patchwork.kernel.org/cover/10941581/

PSCI DT - flattened topology
CPU0: cpu@0 {

compatible = "arm,cortex-a53", "arm,armv8";
enable-method = "psci";
cpu-idle-states = <&CPU_PWRDN>,
<&CLUSTER_RET>,<&CLUSTER_PWRDN>;

};
CPU1: cpu@1 {

compatible = "arm,cortex-a53", "arm,armv8";
enable-method = "psci";
cpu-idle-states = <&CPU_PWRDN>,
<&CLUSTER_RET>,<&CLUSTER_PWRDN>;

};
psci {

compatible = "arm,psci-0.2";
method = "smc";

};

idle-states {
CPU_PWRDN: cpu-power-down {

compatible = "arm,idle-state";
arm,psci-suspend-param = <0x0000001>;

};
CLUSTER_RET: cluster-retention {

compatible = "arm,idle-state";
arm,psci-suspend-param = <0x1000011>;

};
CLUSTER_PWRDN: cluster-power-down {

compatible = "arm,idle-state";
arm,psci-suspend-param = <0x1000031>;

};
};

PSCI DT - hierarchical topology 1/2
CPU0: cpu@0 {

compatible = "arm,cortex-a53", "arm,armv8";
enable-method = "psci";
power-domains = <&CPU_PD0>;
power-domain-names = "psci";

};
CPU1: cpu@1 {

compatible = "arm,cortex-a53", "arm,armv8";
enable-method = "psci";
power-domains = <&CPU_PD1>;
power-domain-names = "psci";

};
psci {

Next page...
};

idle-states {
CPU_PWRDN: cpu-power-down {

compatible = "arm,idle-state";
arm,psci-suspend-param = <0x0000001>;

};
CLUSTER_RET: cluster-retention {

compatible = "domain-idle-state";
arm,psci-suspend-param = <0x1000010>;

};
CLUSTER_PWRDN: cluster-power-down {

compatible = "domain-idle-state";
arm,psci-suspend-param = <0x1000030>;

};
};

PSCI DT - hierarchical topology 2/2
psci {

compatible = "arm,psci-1.0";
method = "smc";
CPU_PD0: cpu-pd0 {

#power-domain-cells = <0>;
domain-idle-states = <&CPU_PWRDN>;
power-domains = <&CLUSTER_PD>;

};
CPU_PD1: cpu-pd1 {

#power-domain-cells = <0>;
domain-idle-states = <&CPU_PWRDN>;
power-domains = <&CLUSTER_PD>;

};
CLUSTER_PD...

};

CLUSTER_PD: cluster-pd {
#power-domain-cells = <0>;
domain-idle-states = <&CLUSTER_RET>,
<&CLUSTER_PWRDN>;

};

PSCI deployment - Init CPU PM topology

Child node
is domain?

Parse DT for
“domain-idle-states”

Initialize genpd
Add genpd OF

provider

PSCI OSI
supported?

Switch PSCI to OSI

psci_dt_topology_init()

Done

yes

yes

no

no

initcall

PSCI OSI
supported?

Build topology via
master/sub-domains

yes

no

PSCI deployment - Init CPUIdle drv (attach CPU)

Next
possible
CPU?

PSCI re-parse DT for
“arm,psci-suspend-param”

Register cpuidle drv

arm_idle_init()

Done

yesno

initcall

dt_init_idle_driver()
“domain-idle-states”

PSCI OSI
supported?

Attach to PM domain
Store per CPU data

PSCI parse DT for
“domain-idle-states”

Add states to cpuidle drv

yes

no

PSCI deployment - Idle (suspend)

genpd_runtime_suspend()
genpd_power_off()

yes

pm_runtime_put_sync_suspend()

Runtime
PM?

cpuidle_select()
cpuidle_enter()

psci_cpu_suspend_enter()

no

idle

Per CPU variables:
“state + domain_state”

Suspend CPU

Power off?

Genpd gov:
select idle state for PM domain

(iterate the genpd cpumask)

Invoke PSCI’s ->power_off():
Set per CPU “domain_state” -

based on selected state

yes

no

suspended Genpd walks
the topology
hierarchically

idle state
+

CPU
attached?

PSCI deployment - Idle (resume)

genpd_runtime_resume()
genpd_power_on()

yes

pm_runtime_get_sync()

Runtime
PM?

no

wakeup

Clear “domain_state”

Power
already

on?

NOOP:
Invoke PSCI’s ->power_on()

no

yes

resumed

Genpd walks
the topology
hierarchically

idle state
+

CPU
attached?

Next - last man activities
● cluster_pm_enter_exit()

○ Deliver to whom and for what idle states?

● cpu_pm_enter|exit()
○ Is the per CPU notifier needed for all idle states?

Solution?

● Use genpd to inform an attached device (in a special way), described via DT.

Next - avoid ktime_get() in genpd
● ktime_get() is called to measure latencies of ->runtime_suspend|resume().
● ktime_get() is called to measure latencies of ->power_off|on().
● ktime_get() is called by the genpd governor.

Solutions?

● Convert to ktime_get_mono_fast_ns().
● Use a calibration mode, rather than always measuring latencies.
● Don’t measure for CPU PM domains.

Next - avoid ktime_get_mono_fast_ns()
● ktime_get_mono_fast_ns() is called several times for each runtime PM status

change (RPM_ACTIVE, RPM_SUSPENDED, RPM_SUSPENDING,
RPM_RESUMING).

Solution?

● Call ktime_get_mono_fast_ns() only at RPM_ACTIVE and RPM_SUSPENDED.

Next - enable deepest state for suspend-to-idle
● Runtime PM is disabled, which means genpd’s ->suspend_noirq() callbacks may

not invoke ->power_off() callback with the last man, as it depends on device order
in the dpm list.

Solutions?

● Configure CPU devices as syscore devices and make use of
pm_genpd_syscore_poweroff()|poweron().

○ There is no locking in this path in genpd, but we need that anyway...

● Special runtime PM treatments of devices corresponding to CPUs.
○ genpd_power_off() - aborts when any device is “prepared”.

Next - decrease overhead of runtime PM
● Lot of unnecessary code becomes executed when pm_runtime_get|put_sync() is

called for CPU devices.
○ Measure the overhead?

Solution?

● Invent specific runtime PM APIs for CPUs, which can be used to decrease the
overhead.

Next - hierarchical limitations in genpd
● Gendp supports multiple idle states, but has only GPD_STATE_POWER_ON|OFF.

○ GPD_STATE_POWER_OFF == any of the idle state has been selected.
○ Master domains allows to be “powered off” even if a subdomain isn’t in the deepest idle

state.

● Fix bug for hierarchical locking in genpd when using GENPD_FLAG_IRQ_SAFE and
when called from non-atomic context.

Next - improve the genpd governor
● The next timer event is not the only reason for a CPU to wakeup.

Solution?

● Use information about the next predicted IRQ and the next IPI.
● Further exchange information between CPUIdle governor, per CPU.

Thank you!

OSPM Summit
2019

