
I-MECH: real-time virtualisation
for industrial automation

Marco Solieri
Pisa, 2019-05-20
3rd OSPM summit



I-MECH project



I-MECH consortium

Members: Applications machines:
• Generic substrate carrier
• 12” wafer stage
• Inline filling and stoppering and
tea bag machines

• Medical manipulator
• Modular robotic arm
• …

1



I-MECH objectives

Smart Control Layer:
“Modular, unified, Hardware
and Software motion-control
building blocks
implementing a
service-oriented architecture
paradigm.”

2



I-MECH control platform



Control platform building block

Hardware
• industrial x86 architecture
• ≥ quad-core
• ≤ 1.5 KEUR

Application
• motion control cycle ≤ 500 µs
• EtherCAT sample rate ≥ 20 KHz
• loop latency ≤ 100 µs

Real-time operating system
• Simulink integration
• EtherCAT support

Hypervisor
• Linux, VxWorks, Windows
• mixed criticality: control & HMI

3



RTOS: ERIKA Enterprise

• Developed by Evidence for automotive ECUs
• Minimal footprint (few KB) and multi-core support
• Certifications: OSEK/VDX, ISO26262 (ASIL B in-progress)
• Reference standards: MISRA-C, AUTOSAR OS
• Open-source: GPL (optional linking exception with a fee)
• Used by several companies and research projects,
e.g. Magneti Marelli, Vodafone Automotive, Ariston, Piaggio

• https:ٗ//ٗٗwww.erika-enterprise.com

4



I-MECH extension of Erika

5



Real-time virtualisation



Hypervisor: Xen

• Developed by Linux Foundation
• Wide support for unmodified guest OSs
• Free and open-source licensed
• Born for multi-tenant servers or general purpose consolidation,
now leaning towards embedded/ safety-critical applications
(e.g. null scheduler, dom0less on Arm)

6



Cache sharing and memory access predictability

Last-level cache (LLC) is shared in x86 processors

• Shared cache allows different cores to contend for storing data
• Hit probability depends on other cores

LLC miss delay from tens to hundreds cycles

• Jitter and average response time increase
• Pessimism in worst case estimations explodes

7



LLC partitioning

Three solutions for three processor families

1. Intel Xeon
2. Recent non-Xeon Intel
3. AMD and old Intel

8



Cache partitioning on Intel Xeon

Cache Allocation Technology (CAT)

• Available on Xeon D, E3 v4, E5 v3, E5 v4, Scalable families
• Direct Xen (and Linux) support from Intel
• Hardware support for way partitioning

• xl psr-cat-cbm-set [OPTIONS] domid cbm
• Associate a capacity bitmask, i.e. assign ways (non-exclusively),
to a given domain

• Negligible inter-core LLC interference within domU
• Smaller LLC availability

9



Cache partitioning on recent non-Xeon Intel

Some commercial real-time hypervisor and OS on some 6th gen (default
or “low-latency” undocumented configuration):

• Negligible inter-core LLC interference between real-time guests/
tasks

• Smaller LLC availability

CAT is there, hidden

• hidden CAT support available
• work in progress: probing functionalities

10



Cache partitioning on recent non-Xeon Intel

Some commercial real-time hypervisor and OS on some 6th gen (default
or “low-latency” undocumented configuration):

• Negligible inter-core LLC interference between real-time guests/
tasks

• Smaller LLC availability

CAT is there, hidden

• hidden CAT support available
• work in progress: probing functionalities

10



Cache partitioning on AMD and old Intel

Partition address space such that
different partitions→ different sets

11



Cache partitioning on AMD and old Intel

Partition address space such that
different partitions→ different sets

Virtualised, two-stage translation
partitions colours to system domains

11



Challenges of cache colouring on Intel

• Cache mapping function may change
→ patiently discover it
→ less colours available

• Cache colour bits overlap with DRAM banks addressing bits
→ extend/restrict colouring
→ reconfigure memory controller if possible

• DMA does not translate with MMU
→ colour also IOMMU translations

12



Challenges of cache colouring on Xen

• memory page pool data structure broken (the “buddy”)
• big pages cannot be used – colours would be mixed
• memory-contiguity orientation useless – memory is colour-striped

→ one data structure per colour
• linked lists of fixed-length array?
• red-black trees?

• Xen needs cache colouring too
→ dynamic recolouring procedure

• Memory ballooning with dom0
→ restrict usage so to avoid colour mixing

13



Evaluation of cache colouring on Xen

14



Conclusion



Further works

• DRAM bandwidth arbitration
• Intel hardware RDP support
• Hypervised throttling
already experimented on Arm by project HERCULES

• Memory co-scheduling
1. PREM-like task model: coarse-grained memory/ compute phases
2. Hypervised scheduling of memory access
already experimented on Arm platform by project HERCULES

• Hidden CAT
• More extensive analysis of Intel processors
• Propose upstream

15



Thanks

I-MECH live demo by Evidence at lunchtime:
DC motor control via EtherCAT from Erika on Xen

16


	I-MECH project
	I-MECH control platform
	Real-time virtualisation
	Conclusion

