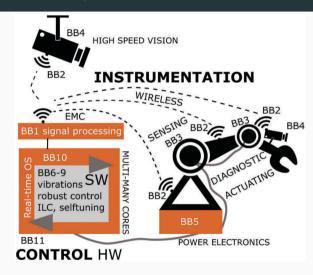
I-MECH: real-time virtualisation for industrial automation

Marco Solieri Pisa, 2019-05-20 **3rd OSPM summit**

High Performance Real Time Lab

I-MECH project

I-MECH consortium


Members:

Applications machines:

- Generic substrate carrier
- 12" wafer stage
- Inline filling and stoppering and tea bag machines
- Medical manipulator
- Modular robotic arm
- ...

I-MECH objectives

Smart Control Layer: "Modular, unified, Hardware and Software motion-control building blocks implementing a service-oriented architecture paradigm."

I-MECH control platform

Control platform building block

Hardware

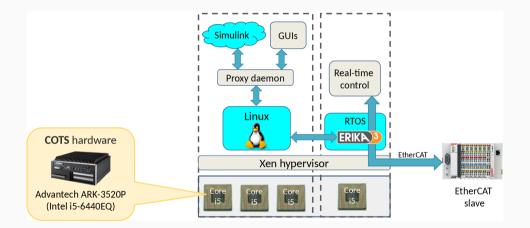
- industrial x86 architecture
- $\bullet \geq \mathsf{quad}\text{-}\mathsf{core}$
- \leq 1.5 KEUR

Application

- motion control cycle \leq 500 μ s
- + EtherCAT sample rate \geq 20 KHz
- loop latency \leq 100 $\mu \rm{s}$

Real-time operating system

- Simulink integration
- EtherCAT support


Hypervisor

- Linux, VxWorks, Windows
- mixed criticality: control & HMI

RTOS: ERIKA Enterprise

- Developed by Evidence for automotive ECUs
- Minimal footprint (few KB) and multi-core support
- Certifications: OSEK/VDX, ISO26262 (ASIL B in-progress)
- Reference standards: MISRA-C, AUTOSAR OS
- Open-source: GPL (optional linking exception with a fee)
- Used by several companies and research projects, e.g. Magneti Marelli, Vodafone Automotive, Ariston, Piaggio
- https://www.erika-enterprise.com

I-MECH extension of Erika

Real-time virtualisation

- Developed by Linux Foundation
- Wide support for unmodified guest OSs
- Free and open-source licensed
- Born for multi-tenant servers or general purpose consolidation, now leaning towards embedded/ safety-critical applications (e.g. null scheduler, dom0less on Arm)

Last-level cache (LLC) is shared in x86 processors

- Shared cache allows different cores to contend for storing data
- Hit probability depends on other cores

LLC miss delay from tens to hundreds cycles

- Jitter and average response time increase
- Pessimism in worst case estimations explodes

Three solutions for three processor families

- 1. Intel Xeon
- 2. Recent non-Xeon Intel
- 3. AMD and old Intel

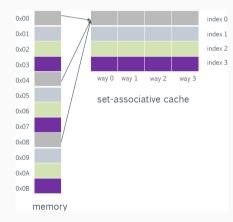
Cache Allocation Technology (CAT)

- Available on Xeon D, E3 v4, E5 v3, E5 v4, Scalable families
- Direct Xen (and Linux) support from Intel
- Hardware support for way partitioning
 - xl psr-cat-cbm-set [OPTIONS] domid cbm
 - Associate a capacity bitmask, i.e. assign ways (non-exclusively), to a given domain
- Negligible inter-core LLC interference within domU
- Smaller LLC availability

Some commercial real-time hypervisor and OS on some 6th gen (default or "low-latency" undocumented configuration):

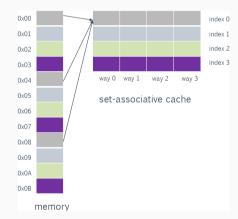
- Negligible inter-core LLC interference between real-time guests/ tasks
- Smaller LLC availability

Some commercial real-time hypervisor and OS on some 6th gen (default or "low-latency" undocumented configuration):

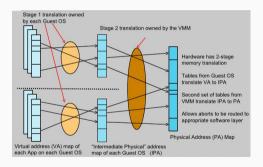

- Negligible inter-core LLC interference between real-time guests/ tasks
- Smaller LLC availability

CAT is there, hidden

- hidden CAT support available
- work in progress: probing functionalities


Cache partitioning on AMD and old Intel

Partition address space such that different partitions \rightarrow different sets

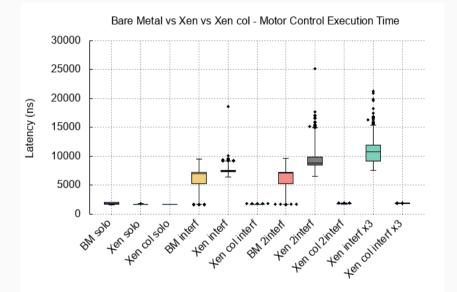


Cache partitioning on AMD and old Intel

Partition address space such that different partitions \rightarrow different sets

Virtualised, two-stage translation partitions colours to system domains

Challenges of cache colouring on Intel


- Cache mapping function may change
 - \rightarrow patiently discover it
 - \rightarrow less colours available
- Cache colour bits overlap with DRAM banks addressing bits \rightarrow extend/restrict colouring
 - \rightarrow reconfigure memory controller if possible
- DMA does not translate with MMU \rightarrow colour also IOMMU translations

Challenges of cache colouring on Xen

- memory page pool data structure broken (the "buddy")
 - big pages cannot be used colours would be mixed
 - memory-contiguity orientation useless memory is colour-striped
 - \rightarrow one data structure per colour
 - linked lists of fixed-length array?
 - red-black trees?
- Xen needs cache colouring too

 → dynamic recolouring procedure
- Memory ballooning with dom0
 → restrict usage so to avoid colour mixing

Evaluation of cache colouring on Xen

Conclusion

Further works

- DRAM bandwidth arbitration
 - Intel hardware RDP support
 - Hypervised throttling
 - already experimented on Arm by project HERCULES
- Memory co-scheduling
 - 1. PREM-like task model: coarse-grained memory/ compute phases
 - 2. Hypervised scheduling of memory access already experimented on Arm platform by project HERCULES
- Hidden CAT
 - More extensive analysis of Intel processors
 - Propose upstream

Thanks

I-MECH live demo by Evidence at lunchtime: DC motor control via EtherCAT from Erika on Xen