
Scheduler behavioural tesƟng

ValenƟn Schneider <valentin.schneider@arm.com>

20/05/2019

© 2019 Arm Limited

Outline

Context

TesƟng setup

Test samples

Dealing with the noise

Wrapping up

2 © 2019 Arm Limited

Context

3 © 2019 Arm Limited

What this is about

Unit tests menƟoned by Oracle folks @ OSPM 2018
How do we make sure we don’t break other people’s stuff?

This is an overview of how we do things at Arm
Powered by LISA
Mostly about how we make sure what we care about doesn’t get broken
Not the one true gospel but at least it’s something…

Two test triggers
Ɵp/sched/core + in-flight patches (integraƟon branch) - triggered every 2 weeks
Patch validaƟon - can be triggered anyƟme

4 © 2019 Arm Limited

https://www.youtube.com/watch?v=mkm5B86tiNE
https://github.com/ARM-software/lisa

Arm big.LITTLE and DynamIQ

Asymmetric topologies
”clusters” of CPUs w/ different µarchs
Frequencies usually shared within a cluster

Funny requirements on task placement
opƟmal energy/inst (!= minimal power) (EAS)
don’t leave cpu-hogs on low-perf CPUs (misfit tasks)

Backed by some more infrastructure
capacity & frequency invariant load-tracking signals (PELT)
frequency selecƟon based on scheduler signals (cpufreq)

All of which we have tests for

5 © 2019 Arm Limited

https://lisa-linux-integrated-system-analysis.readthedocs.io/en/master/kernel_tests.html#available-tests

TesƟng setup

6 © 2019 Arm Limited

rt-app
A highly configurable real-Ɵme workload simulator that accepts a :SON grammar for de-
scribing task execuƟon and periodicity
- LWN

Based on a calibraƟon value (amount of work), not pure Ɵmer

7 © 2019 Arm Limited

https://lwn.net/Articles/725238/

TesƟng dogma

We’re trying to test specific bits of the scheduler
”Wrong” scheduling decisions can be due to very varied reasons
Things like hackbench are way too aggressive

Using rt-app, we try to reproduce specific scenarios to trigger specific behaviours

(Most) workloads are parametric on the topology
Split data collecƟon and analysis

Allows ”offline” replaying
Lets us test e.g. different margins

8 © 2019 Arm Limited

Test samples

9 © 2019 Arm Limited

EAS behaviour

Goal: Ensure EAS is making the right decisions
small tasks on LITTLEs
big tasks on bigs

Example workload: N tasks (with N big CPUs) made of 2 phases
low uƟlizaƟon (should be placed on a LITTLE)
high uƟlizaƟon (should be placed on a big)

With an energy model (EM), we can esƟmate energy costs
EM + rt-app descripƟon -> esƟmate cost of energy-opƟmal task placement
EM + scheduling traces (switch/wakeup) -> esƟmate cost of actual task placement

rt-app also gives us some latency report for performance analysis

10 © 2019 Arm Limited

EAS behaviour - energy cost (HiKey960)

Figure: Expected placement
Figure: Actual placement

EsƟmated 11’924 bogo-joules < 12’697 threshold (5% margin on opƟmal placement) (OK)
Noisiest non-test task was irq/63-tsensor_ (≈0.3% of test duraƟon))

11 © 2019 Arm Limited

EAS behaviour - performance (HiKey960)

rt-app gives us a latency report aŌer execuƟng a profile
Time between wakeup and execuƟon (wakeup latency)
Time from work compleƟon to start of next period (slack)

Less than 1% of negaƟve slack for all tasks (OK)

12 © 2019 Arm Limited

EAS behaviour - outcome

Failures in workload with big & small tasks (≈80% fails)
overuƟlized scenario (no EAS)
Very small task co-scheduled with big task on big CPU while LITTLEs are idling
WIP: let small tasks through the slow wakeup path?
(or yet another argument to get rid of DIE level on big.LITTLE)

Failures in workload with only small tasks(≈5% fails)
Small task starts on a big CPU
UƟlizaƟon eventually decays enough that it gets moved to a LITTLE
Signal not properly decayed on migraƟon
Task ping-ponging between two CPUs of different capaciƟes
WIP: update_rq_clock() in migrate_task_rq_fair()?

13 © 2019 Arm Limited

DVFS sanity checking

Goal: make sure cpufreq/DVFS can be relied
upon

Run sysbench on the same CPU at increasing
frequencies

Ensure amount of work done is strictly
monotonically increasing

Highlighted some frequency switching issue
on HiKey960, see patch.

CPU OPP Base Fix
0 533000 104 104
0 999000 104 201
0 140200 285 285
0 1709000 285 349
0 1844000 377 377
4 903000 249 248
4 1421000 249 394
4 1805000 500 500
4 2112000 499 583
4 2362000 653 654

14 © 2019 Arm Limited

https://lore.kernel.org/lkml/d3ede0ab-b635-344c-faba-a9b1531b7f05@arm.com/

Load tracking

Goal: make sure load tracking signals behave as expected
Involves capacity & frequency invariance

No escape here, need extra trace events: runqueue and enƟty signals
Invariance

Run the same task on a LITTLE, a big, and with different frequencies
Signal values should be about the same

Signal dynamics
Run a task pinned to a given CPU
Simulate PELT signal
Compare min/max values
Compare values at each reported event

15 © 2019 Arm Limited

Load tracking

Figure: PELT uƟlizaƟon behaviour test (50% task)

16 © 2019 Arm Limited

Load tracking - outcome

NOHZ remote stats update (LKML)
Created some tests to validate the
patch-set
WriƩen by a complete newbie
Found a simple condiƟon reordering
mishap in a later version

Figure: Blocked load decay by NOHZ balance

PELT Ɵme scaling (kernel.org)
Load used to only scale with freq, not capacity (e3279a2e6d69 ("sched/fair: Make
utilization tracking CPU scale-invariant"))
Task on a LITTLE generated ~twice the load than if it ran on a big (HiKey960)
Tests started failing
Not a bug per se, but useful eye-opener

17 © 2019 Arm Limited

https://lore.kernel.org/lkml/b1efd041-2faa-76e0-7d9b-3d2917e03012@arm.com/
https://lore.kernel.org/lkml/1750aeb3-b29a-e6e6-93f4-82cae69777ec@arm.com/
https://lore.kernel.org/lkml/1750aeb3-b29a-e6e6-93f4-82cae69777ec@arm.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id%3D23127296889fe84b0762b191b5d041e8ba6f2599

Dealing with the noise

18 © 2019 Arm Limited

LimiƟng what can be executed

How to prevent non-workload tasks from running?
Background acƟvity can impact the scheduling

Buildroot
Userspace with the bare minimum

Freezer cgroup
Less ideal than buildroot, but helpful for e.g. Android targets
Small exclusion list (init, systemd, ssh, adbd, …)

Improves the situaƟon, but does not cover everything…
sshd, adbd, NFS, USB…

19 © 2019 Arm Limited

Noisy tasks we have to live with
Goodie from rt-app: we know the exact name of our tasks!

we can run some stats on the scheduling trace and look at how busy non-rt-app tasks were
raise a flag when that’s too much (undecided test result)
ATM threshold is 1% of total rt-app duraƟon (configurable per-test)

Sweep of the culprits on all of our tests (HiKey960):

20 © 2019 Arm Limited

Wrapping up

21 © 2019 Arm Limited

Recap & todo

We can do quite a lot with just sched_switch & sched_wakeup
But we need more for validaƟng something as fundamental as PELT

Trying to guess the signal from the scheduling trace is a no-go
See patch-set from Qais

More varied syntheƟc workloads
Other scheduler bits to look at?
SuggesƟons (and contribuƟons!) more than welcome

22 © 2019 Arm Limited

https://lore.kernel.org/lkml/20190510113013.1193-1-qais.yousef@arm.com/

Thank you!

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2019 Arm Limited

Misfit

Goal: make sure misfit migraƟon works as expected
mostly Ɵming aspects

Example workload: N CPU-hogs (with N CPUs)
Tasks on bigs will finish first and then pull misfits from LITTLEs

Look at every idle window of a big CPU
If any LITTLE is busy, assert the idle window duraƟon is < threshold
If misfit is doing its job, big CPUs should always have something to do

Also make sure there’s no coscheduling going on

24 © 2019 Arm Limited

Misfit - task placement

Figure: Misfit test trace
25 © 2019 Arm Limited

Misfit - outcome

Somewhat indirectly lead to 3f130a37c442 ("sched/fair: Don't increase
sd->balance_interval on newidle balance")

26 © 2019 Arm Limited

RTA+Ftrace in python
14/05/2019

file:///tmp/babel-29151z6Z/ltxhtml-29151_eA 1/1

target = ...

rtapp_profile = {
 "10pct_task" : Periodic(duty_cycle_pct=10, duration_s=1, period_ms=16)
}

wload = RTA.by_profile(target, "example", rtapp_profile)

ftrace_coll = FtraceCollector(target, events=["sched_switch", "sched_wakeup"], buffer_size=10240)

with ftrace_coll:
 wload.run()

ftrace_coll.get_trace("path/to/trace.dat")

27 © 2019 Arm Limited

Task placement code snippet
14/05/2019

file:///tmp/babel-29151z6Z/ltxhtml-29151yNG 1/1

class EnergyModelWakeMigration(EASBehaviour):
 """..."""
 task_prefix = "emwm"

 @classmethod
 def get_rtapp_profile(cls, plat_info):
 bigs = plat_info["capacity-classes"][-1]
 littles = plat_info["capacity-classes"][0]

 # 20% of a LITTLE's capacity
 start_pct = cls.unscaled_utilization(plat_info, littles[0], 20)
 # 70% of a big's capacity
 end_pct = cls.unscaled_utilization(plat_info, bigs[0], 70)

 rtapp_profile = {}

 for i in range(len(bigs)):
 rtapp_profile["{}_{}".format(cls.task_prefix, i)] = Step(
 start_pct=start_pct,
 end_pct=end_pct,
 time_s=2,
 loops=2,
 period_ms=cls.TASK_PERIOD_MS
)

 return rtapp_profile

28 © 2019 Arm Limited

Noisy tasks decorator
14/05/2019

file:///tmp/babel-29151z6Z/ltxhtml-29151m2e 1/1

@RTATestBundle.check_noisy_tasks(noise_threshold_pct=1)
def test_throughput(self, allowed_idle_time_s=None) -> ResultBundle:
 ...

29 © 2019 Arm Limited

Test results summary

We need several iteraƟons to have confidence in our results
Results for HiKey960

There’s an actual scheduling corner case hiding in there (see task placement test outcome)

testcase status
EnergyModelWakeMigraƟon:test_slack: passed 315/315 (100.0%)

EnergyModelWakeMigraƟon:test_task_placement: passed 315/315 (100.0%)
[…]

TwoBigThreeSmall:test_slack: passed 315/315 (100.0%)
TwoBigThreeSmall:test_task_placement: FAILED 8/315 (2.5%)

30 © 2019 Arm Limited

Comparing data sets

We always compare the test results from one integraƟon to the previous one

Example here for test results on HiKey960

testcase old% new% pvalue
TwoBigThreeSmall:test_task_placement 0.0% 3.7% 1.36 e-02

31 © 2019 Arm Limited

	
	Outline
	Context
	
	What this is about
	Arm big.LITTLE and DynamIQ

	Testing setup
	
	rt-app
	Testing dogma

	Test samples
	
	EAS behaviour
	EAS behaviour - energy cost (HiKey960)
	EAS behaviour - performance (HiKey960)
	EAS behaviour - outcome
	DVFS sanity checking
	Load tracking
	Load tracking
	Load tracking - outcome

	Dealing with the noise
	
	Limiting what can be executed
	Noisy tasks we have to live with

	Wrapping up
	
	Recap & todo
	

	Appendix
	Misfit
	Misfit - task placement
	Misfit - outcome
	RTA+Ftrace in python
	Task placement code snippet
	Noisy tasks decorator
	Test results summary
	Comparing data sets

