arm

Scheduler behavioural testing

Valentin Schneider <valentin.schneider@arm.com>
20/05/2019

© 2019 Arm Limited



Outline

Context

Testing setup

Test samples

Dealing with the noise

Wrapping up

2 © 2019 Arm Limited q rm



Context

2019 Arm Limited q rm



What this is about

e Unit tests mentioned by Oracle folks @ OSPM 2018
o How do we make sure we don’t break other people’s stuff?
e This is an overview of how we do things at Arm
e Powered by LISA

o Mostly about how we make sure what we care about doesn’t get broken
o Not the one true gospel but at least it’s something...

o Two test triggers

o tip/sched/core + in-flight patches (integration branch) - triggered every 2 weeks
o Patch validation - can be triggered anytime

© 2019 Arm imited arm


https://www.youtube.com/watch?v=mkm5B86tiNE
https://github.com/ARM-software/lisa

5

Arm big.LITTLE and DynamIQ

Asymmetric topologies

o “clusters” of CPUs w/ different parchs
o Frequencies usually shared within a cluster

Funny requirements on task placement
o optimal energy/inst (= minimal power) (EAS)
o don't leave cpu-hogs on low-perf CPUs (misfit tasks)

Backed by some more infrastructure

o capacity & frequency invariant load-tracking signals (PELT)
o frequency selection based on scheduler signals (cpufreq)

All of which we have tests for

© 2019 Arm Limited

|

Peripheral Port Async Bridges

AMBA 5 ACE or CHI Shared L3 cache

DynamlQ Shared Unit (DSU)

arm


https://lisa-linux-integrated-system-analysis.readthedocs.io/en/master/kernel_tests.html#available-tests

Testing setup

arm



rt-app

A highly configurable real-time workload simulator that accepts a JSON grammar for de-
scribing task execution and periodicity
- LWN

e Based on a calibration value (amount of work), not pure timer

"10pct_task": {
"delay": 0, # Start running immediatly
"phases": {
"p000001": {
"loop": 62, # Repeat this phase 62 times (~1g)

"run": 1600, # Run for 1.6ms
"timer": { # Wait for next timer...
"period": 16000, # ...Firing every léms
"ref": "10pct_task"
}
}
I
"policy": "SCHED_OTHER",
"loop": 1

© 2019 Arm Limited q rm


https://lwn.net/Articles/725238/

Testing dogma

e We're trying to test specific bits of the scheduler
e ”Wrong” scheduling decisions can be due to very varied reasons

o Things like hackbench are way too aggressive

e Using rt-app, we try to reproduce specific scenarios to trigger specific behaviours

e (Most) workloads are parametric on the topology
e Split data collection and analysis

o Allows "offline” replaying

o Lets us test e.g. different margins

© 2019 Arm Limited q rI I I



Test samples

arm



EAS behaviour

e Goal: Ensure EAS is making the right decisions

o small tasks on LITTLEs
o big tasks on bigs

e Example workload: N tasks (with N big CPUs) made of 2 phases

o low utilization (should be placed on a LITTLE)
o high utilization (should be placed on a big)

e With an energy model (EM), we can estimate energy costs

o EM + rt-app description -> estimate cost of energy-optimal task placement
o EM + scheduling traces (switch/wakeup) -> estimate cost of actual task placement

e rt-app also gives us some latency report for performance analysis

10 © 2019 Arm Limited

arm



EAS behaviour - energy cost (HiKey960)

11
i

Figure: Expected placement

Figure: Actual placement

Estimated 11’924 bogo-joules < 12’697 threshold (5% margin on optimal placement) (OK)
Noisiest non-test task was irq/63-tsensor_ (=0.3% of test duration))

© 2019 Arm Limited

arm



EAS behaviour - performance (HiKey960)

12

e rt-app gives us a latency report after executing a profile
o Time between wakeup and execution (wakeup latency)
o Time from work completion to start of next period (slack)

Task [emwm_0] (start) Latency and (completion) Slack

-

I

— Slack
WKPLatency
- Phase boundary

Time

e Less than 1% of negative slack for all tasks (OK)

© 2019 Arm Limited

arm



EAS behaviour - outcome

e Failures in workload with big & small tasks (=80% fails)

overutilized scenario (no EAS)

Very small task co-scheduled with big task on big CPU while LITTLEs are idling
WIP: let small tasks through the slow wakeup path?

(or yet another argument to get rid of DIE level on big.LITTLE)

Failures in workload with only small tasks(=5% fails)

Small task starts on a big CPU

Utilization eventually decays enough that it gets moved to a LITTLE
Signal not properly decayed on migration

Task ping-ponging between two CPUs of different capacities

WIP: update rq clock() in migrate task rq fair() ?

© 2019 Arm Limited q rm



DVFS sanity checking

e Goal: make sure cpufreq/DVFS can be relied
upon
e Run sysbench on the same CPU at increasing

frequencies

e Ensure amount of work done is strictly
monotonically increasing

e Highlighted some frequency switching issue
on HiKey960, see patch.

14 © 2019 Arm Limitec

CPU OPP Base  Fix
0 533000 104 104
0 999000 104 201
0 140200 285 285
0 1709000 285 349
0 1844000 377 377
4 903000 249 248
4 1421000 249 394
4 1805000 500 500
4 2112000 499 583
4 2362000 653 654

arm


https://lore.kernel.org/lkml/d3ede0ab-b635-344c-faba-a9b1531b7f05@arm.com/

Load tracking

Goal: make sure load tracking signals behave as expected

o Involves capacity & frequency invariance

No escape here, need extra trace events: runqueue and entity signals
Invariance

o Run the same task on a LITTLE, a big, and with different frequencies
o Signal values should be about the same

Signal dynamics

e Run atask pinned to a given CPU

o Simulate PELT signal

o Compare min/max values

o Compare values at each reported event

© 2019 Arm Limited

arm



Load tracking

g 8 &8 8 8 8

16

Trace signal

AAAAAAAAARAARAAAARAARAARALAARAARAARARRARAARAAAAAAARAARARARALAARAARARAARAARAARA A RARAARAAALAARAARANRARRAR AN

O RO

- Guty-cycle based average

Expected signal

AAAAAAAAAAARAALAARARARARARARAARARARAARARAAAAAARAAAMAARAARRARARAAARARAAARARARAARARAAAAAAAARAARARARARAARARA

value
- duty-cycle based average

AR R R R

NEEEEEE

Figure: PELT utilization behaviour test (50% task)

© 2019 Arm Limited G rm



Load tracking - outcome

e NOHZ remote stats update (LKML)

o Created some tests to validate the

patch-set
o Written by a complete newbie

o Found a simple condition reordering e whs e wh e whe

mishap in a later version
Figure: Blocked load decay by NOHZ balance

e PELT time scaling (kernel.org)
o Load used to only scale with freq, not capacity (€3279a2e6d69 ("sched/fair: Make
utilization tracking CPU scale-invariant"))
o Task on a LITTLE generated ~twice the load than if it ran on a big (HiKey960)
o Tests started failing
o Not a bug per se, but useful eye-opener

17 © 2019 Arm Limited q rm


https://lore.kernel.org/lkml/b1efd041-2faa-76e0-7d9b-3d2917e03012@arm.com/
https://lore.kernel.org/lkml/1750aeb3-b29a-e6e6-93f4-82cae69777ec@arm.com/
https://lore.kernel.org/lkml/1750aeb3-b29a-e6e6-93f4-82cae69777ec@arm.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id%3D23127296889fe84b0762b191b5d041e8ba6f2599

Dealing with the noise

arm



Limiting what can be executed

How to prevent non-workload tasks from running?

e Background activity can impact the scheduling

Buildroot

o Userspace with the bare minimum

Freezer cgroup

o Lessideal than buildroot, but helpful for e.g. Android targets
o Small exclusion list (init, systemd, ssh, adbd, ...)

e Improves the situation, but does not cover everything...
e sshd, adbd, NF'S, USB...

19 © 2019 Arm Limited q rl I I



Noisy tasks we have to live with

e Goodie from rt-app: we know the exact name of our tasks!
e we can run some stats on the scheduling trace and look at how busy non-rt-app tasks were
o raise a flag when that’s too much (undecided test result)
o ATM threshold is 1% of total rt-app duration (configurable per-test)

e Sweep of the culprits on all of our tests (HiKey960):

noise on hikey 960

120 | W irg/63.tsensor_
- sshd

= rcu_preempt
100 { = sugov:0

#occurences

107!
noise exec time (rel)

20 © 2019 Arm Limited q rm



Wrapping up

arm



Recap & todo

e We can do quite a lot with just sched switch & sched wakeup
e But we need more for validating something as fundamental as PELT

e Trying to guess the signal from the scheduling trace is a no-go
e See patch-set from Qais

e More varied synthetic workloads
o Other scheduler bits to look at?
o Suggestions (and contributions!) more than welcome

22 © 2019 Arm Limited q rm


https://lore.kernel.org/lkml/20190510113013.1193-1-qais.yousef@arm.com/

Thank you!

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2019 Arm Limited



Misfit

Goal: make sure misfit migration works as expected

o mostly timing aspects

Example workload: N CPU-hogs (with N CPUs)
o Tasks on bigs will finish first and then pull misfits from LITTLEs
e Look at every idle window of a big CPU

o If any LITTLE is busy, assert the idle window duration is < threshold
o If misfit is doing its job, big CPUs should always have something to do

Also make sure there’s no coscheduling going on

24 © 2019 Arm Limitec

arm



Misfit - task placement

25

ceuo I 1l 1 [ L LR e
cPuUt | ] |
R |
cPU3 | | | |

e [ s — I
CPUS | s o o s e ettt
PU6 ||| s vl I
CPUT | e I

Figure: Misfit test trace

© 2019 Arm Limited

arm



Misfit - outcome

e Somewhat indirectly leadto 3£130a37¢c442 ("sched/fair: Don't increase
sd->balance interval on newidle balance")

26 © 2019 Arm Limited q rm



RTA+Ftrace in python

14/05/2019
target =
rtapp_profile = {

"10pct_task" : Periodic(duty_cycle_pct durati , period_ms=16)
}

wload = RTA.by profile(target, "example", rtapp_profile)

g

ftrace_coll = FtraceCollector(target, events=["sched_switch", sched_wakeup"], buffer_size=10240

with ftrace_coll:
wload.run()

ftrace_coll.get_trace("path/to/tra

arm

27 © 2019 Arm Limited



Task placement code snippet

14/05/2019

class EnergyModelwakeMigration(EASBehaviour):

nun nun

task_prefix = "emwm"

@classmethod

def get_rtapp_profile(cls, plat_info):
bigs = plat_info['"capacity-classes"][-1]
littles = plat_info["capacity-classes"][0]

start_pct = cls.unscaled_utilization(plat_info, littles[@], 20)
end_pct = cls.unscaled_utilization(plat_info, bigs[0], 70)
rtapp_profile = {}

for i in range(len(bigs)):
rtapp_profile["{}_{}".format(cls.task_prefix, i)] = Step(
start_pct=start_pct,
end_pct=end_pct,
time_s=2,
loops=2,
period_ms=cls.TASK_PERIOD_MS

)

return rtapp_profile
© 2019 Arm Limited




Noisy tasks decorator

14/05/2019

@ Bundle.check_noi L [
def test throughput(self, allowed idle time_s=None) -> ResultBundle:

29 © 2019 Arm Limited q rm



Test results summary

e We need several iterations to have confidence in our results

e Results for HiKey960

e There’s an actual scheduling corner case hiding in there (see task placement test outcome)

testcase status
EnergyModelWakeMigration:test_slack: passed 315/315 (100.0%)
EnergyModelWakeMigration:test_task_placement: | passed 315/315 (100.0%)
[...]
TwoBigThreeSmall:test_slack: passed 315/315 (100.0%)
TwoBigThreeSmall:test_task_placement: FAILED 8/315 (2.5%)

arm



Comparing data sets

e We always compare the test results from one integration to the previous one

e Example here for test results on HiKey960

testcase ‘ old% new% pvalue
TwoBigThreeSmall:test_task_placement ‘ 0.0% 3.7% 1.36e-02

31 © 2019 Arm Limited q rI I I



	
	Outline
	Context
	
	What this is about
	Arm big.LITTLE and DynamIQ

	Testing setup
	
	rt-app
	Testing dogma

	Test samples
	
	EAS behaviour
	EAS behaviour - energy cost (HiKey960)
	EAS behaviour - performance (HiKey960)
	EAS behaviour - outcome
	DVFS sanity checking
	Load tracking
	Load tracking
	Load tracking - outcome

	Dealing with the noise
	
	Limiting what can be executed
	Noisy tasks we have to live with

	Wrapping up
	
	Recap & todo
	

	Appendix
	Misfit
	Misfit - task placement
	Misfit - outcome
	RTA+Ftrace in python
	Task placement code snippet
	Noisy tasks decorator
	Test results summary
	Comparing data sets


