
Morten Rasmussen <morten.rasmussen@arm.com>

OSPM Summit 2019, 20-22 May, Pisa

SCHED_{DEADLINE, RT} for 
capacity constrained systems

Patrick Bellasi <patrick.bellasi@arm.com>

mailto:morten.rasmussen@arm.com
mailto:patrick.bellasi@arm.com


2 © 2019 Arm Limited 

SCHED_DEADLINE
Challenges for real use-cases on mobile platforms

Requires each task to specify bandwidth requirements, provides guarantee in return

• Determining bandwidth requirements for complex real workloads is difficult
• Real-world use-cases have complex dependencies among multiple tasks
• Tasks can have quite variable demand, e.g. frame composition time
• Worst-case bandwidth reservations are too expensive

– Conservative reservations restrict the number of possible reservations
– High, mostly unused, bandwidth requirements are expensive in energy

• (Too) simple view on CPU compute capacity
• Assumes CPUS with symmetric capacity and performance never capped, while many systems have:

– DVFS: Some governors are not aware of bandwidth guarantees
– SMT: Compute bandwidth of sibling threads is hard to predict
– Asymmetric CPU capacity: Not all CPUs in the systems may be able to deliver the reserved bandwidth
– Performance capping: For a range of reasons, including thermal, CPUs might not be able to guarantee 

delivery of high bandwidth



3 © 2019 Arm Limited 

SCHED_DEADLINE
What level of guarantee should SCHED_DEADLINE provide?

Weak guarantees

• Pros
– Admission control can be optimistic

i.e. accept nearly full utilization of CPUs

– No sustainable performance level info needed

• Cons
– Guarantees might be violated

by performance capping at OS and/or HW/FW level

– Tasks need notifications
when their reservations are not honoured

– DL might not be useful for some use-cases
e.g cases that don’t handle broken guarantees well

Hard(er) guarantees

• Pros
– Users can (mostly) trust guarantees

Only break when there are bigger problems than bandwidth 
reservations not being honored

• Cons
– Guaranteed performance level reported by HW

is needed for admission control

– Allowed CPU utilization is likely to be pessimistic
– DL might not be useful for some use-cases

e.g, cases requiring relatively high bandwidth

What about mixed guarantees?
hard guarantee tasks admitted based on sustainable capacities

weak guarantee DL tasks admitted on “exceeding capacity”



4 © 2019 Arm Limited 

SCHED_DEADLINE
Suggestions for improvements

• Capacity awareness: Admission control and task placement (RFC by Luca Abeni)

• Cpufreq policy/governor integration (exists already for sched_util)

• Guaranteed performance levels from HW/FW integrated with admission control and 
task placement.

• Energy-aware task placement



5 © 2019 Arm Limited 

SCHED_RT
Outstanding issues for mobile systems

• Priority based scheduling class used for latency sensitive tasks

• Current limitations hindering RT use in mobile systems:
• Running tasks at the highest CPU capacity is too expensive and not always required
• Assumes symmetric CPU capacities
• Completely ignore CFS tasks

• Possible improvements for discussion:
• Capacity-awareness to get more predictable performance on asymmetric capacity systems?

– e.g. avoid an RT task to SYNC_WAKE a CFS task on a LITTLE CPU
by adding support for RT entities PELT and/or UtilClamp constraints

• Per task(_group) performance constraints to better guide cpufreq decisions, i.e. UtilClamp?
– Make RT aware of already busy CPUs

i.e. if possible, avoid to preempt CFS tasks?



6 © 2019 Arm Limited 

Recap and action items
Focus and priorities?

DEADLINE Scheduler

• Capacity awareness
• Partitioned CBS

with enter/exit time tasks placement?

• Guaranteed bandwidth allocation
with standardized HW/FW integration?

• Support mixed Hard and Soft DL guarantees
with graceful degradation for soft DL tasks?

• Energy awareness
• GRUB-PA improvements…?

• Admission time tasks placement?

• Others awareness
• Proxy execution and/or hierarchical sched?

RT Scheduler

• Capacity awareness
• Per task(group) constraints aware placements?

• Preferred vs Possible cpus affinity mask?

• Energy awareness
• Energy sensitive vs non-energy sensitive RT 

tasks?

• Others awareness
• CFS busy CPUs avoidance?

• Make CFS aware of RT busy CPUs?


