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performance @ SUSE, professional bias

● server workloads
● performance oriented

● assume PM patches meet energy-saving goals
● make sure performance trade-off is acceptable

● support x86, ARM, PPC, s390 (a.k.a. mainframe)
● grid continuously running performance regression testing
● current machine pool is ~15 Intel’s and 1 ARM
● AMD’s and PPC on the way to the team’s pool
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outline

● concepts, definitions
● prototype patch
● test results
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frequency scale invariance

Task running at half the freq takes twice the time ■ ▲…

… but util_avg is a function of running time…

… hence util_avg is ill-defined.

 ⇨ cannot be compared across CPUs or time

■  assuming performance is proportional to clock frequency

▲ if the machine is not saturated. If util is maxed out, we cannot quantify the compute demand
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x86 situation

NOT F-INVARIANT F-INVARIANT

Q Q *
f
curr

f
max

PROBLEM: in x86 fmax is not a constant:
                    turbo states availability depends on neighboring cores
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proposed approaches

1. normalize against 1-active-core turbo level (max turbo)

2. normalize against all-cores-active turbo level

3. use power data (RAPL) to infer max available freq
● AVX workloads don’t even reach nominal freq

4. keep average of recent past and normalize against that 
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V. Guittot’s new PELT invariance

scale invariance via dilating time (at RQ level)

● the lower the frequency, the less PELT segments we have
● but ONLY if RQ is not idle. Idle time is not warped.

delta = time since last PELT update
delta *= freq_percent

absolute time   | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
@ max capacity  ------******---------------******---------------
@ half capacity ------************---------************---------
clock pelt      | 1| 2|    3|    4| 7| 8| 9|   10|   11|14|15|16
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querying the hardware for OPP

DEFINITIONS

base frequency: max non turbo OPP.
APERF: counter spinning at actual core frequency. Stops at idle.
MPERF: counter spinning at base frequency. Stops at idle.
TSC: exactly like MPERF but doesn’t stop at idle.

FORMULAS

Avg_MHz  = delta_APERF / delta_time = delta_APERF * base_freq / delta_TSC
Busy%    = delta_MPERF / delta_TSC
Busy_MHz = delta_APERF / delta_MPERF * base_freq 



10

patch description

READ aperfΔ
READ mperfΔ

freq_percent =

             = 

IF freq_percent > 1

        freq_percent = 1

WRITE freq_percent TO THIS CPU

BusyMHz

freq_max

aperf  freq_baseΔ
mperf   freq_maxΔ

*

AT SCHED TICK

PER-CPU VARIABLE : freq_percent
CONSTANT         : freq_max

GLOBAL STATE

delta = time since last PELT update
delta *= freq_percent
...

AT PELT UPDATE

util_avg

load_avg

util_est OPP selection

load balancing

Wake-up path
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machine descriptions and setup

● 8x-SKYLAKE-UMA
● 4 cores (8 threads) Skylake (2015), single socket, 32G of memory, SSD storage

● 80x-BROADWELL-NUMA
● 40 cores (80 threads) Broadwell (2014), two sockets, 512G of memory, SSD storage

● 48x-HASWELL-NUMA
● 24 cores (48 threads) Haswell (2013), two sockets, 64G of memory, rotary disk

baseline kernel: v5.0

cpufreq driver/governor: intel_pstate passive (aka intel_cpufreq) / schedutil

filesystem: XFS
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neutral benchmarks

● pgbench read / write
● flexible I/O (FIO)
● NAS Parallel Benchmarks (NPB) using MPI, some computational 

kernels
● NPB using OpenMP, some computational kernels
● netperf on TCP (loopback)
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non-neutral benchmarks
BENCHMARK 1 x SKYLAKE

8 CORES
2 x BROADWELL

80 CORES
2 x HASWELL

48 CORES
UNIT BETTER IF

pgbench-ro 0.99 1 1 0.99 1.16 1.01 1.15 1.02 1.18 1.07 1.21 1.04 TRANS_PER_SECOND higher

sqlite 1.02 1.02 1.01 1.01 1.07 1.07 1.08 1.07 1.20 1.20 1.20 1.19 TRANS_PER_SECOND higher

dbench 1 1 1 0.99 0.91 0.92 0.91 0.91 0.94 0.95 0.94 0.94 TIME_MSECONDS lower

nas-mpi-cg 1 0.99 1 1 0.99 0.99 1 1 1 1 1.02 1 TIME_SECONDS lower

nas-mpi-lu 1 0.99 1 1 1 1 1.01 1 1 0.99 1 1 TIME_SECONDS lower

nas-mpi-mg 1 0.99 1 1 1 1 0.99 1 1.01 1 1.01 0.99 TIME_SECONDS lower

nas-mpi-sp 1 0.99 1 1 1 1 1 1 1 1 1 1 TIME_SECONDS lower

nas-omp-cg 1.01 1 1.01 1 1 0.99 1 1 0.99 0.99 1.01 1 TIME_SECONDS lower

nas-omp-lu 1.01 1 1.01 1 1 1.13 1.13 1.03 1.04 0.97 1.04 1.04 TIME_SECONDS lower

nas-omp-mg 1.01 1 1.01 1 1 0.99 0.99 0.99 1 1 1.01 1 TIME_SECONDS lower

nas-omp-sp 1.01 1 1.01 1 1.02 1 1.02 1.02 0.99 1.02 1.01 0.99 TIME_SECONDS lower

nas-omp-ua 1.01 1 1.01 1 1.02 0.99 1 1 0.98 1.01 0.97 0.99 TIME_SECONDS lower

netperf-udp 1.02 0.99 0.99 1.01 1.01 0.99 1.02 1.06 1.10 1.07 0.98 1.16 MBITS_PER_SECOND higher

tbench 1.14 1.12 1.16 1.10 1.30 1.03 1.48 0.99 1.12 1.03 1.20 1.01 MBYTES_PER_SECOND higher

hackbench-process-pipes 1.01 0.99 1.01 0.98 0.71 1 1 0.82 1 0.99 1 0.95 TIME_SECONDS lower

kernbench 0.98 0.97 0.98 0.98 0.84 0.84 0.84 0.84 0.92 0.91 0.91 0.93 TIME_SECONDS lower

gitsource 0.65 0.65 0.65 0.65 0.47 0.47 0.48 0.47 0.68 0.68 0.67 0.66 TIME_SECONDS lower

statistically significant                meh                 statistically significant

TURBO-ALL-CORES
TURBO-1-CORE-VINCENT
TURBO-ALL-CORES-VINCENT
TURBO-1-CORE
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tbench on 48x-HASWELL-NUMA

                5.0.0                      5.0.0                       5.0.0                       5.0.0                       5.0.0
              vanilla            turbo-all-cores        turbo-1-core-vincent     turbo-all-cores-vincent                turbo-1-core

1        199.1  ±0.4%     205.0  ±0.6% (   2.9%)      199.0  ±0.6% (  -0.0%)      221.8  ±3.1% (  11.3%)      200.3  ±1.3% (   0.5%)
2        389.5  ±0.4%     414.5  ±0.9% (   6.4%)      402.5  ±0.5% (   3.3%)      471.7  ±2.9% (  21.0%)      400.4  ±0.3% (   2.7%)
4        800.7  ±1.7%     916.2  ±2.9% (  14.4%)      832.0  ±0.7% (   3.9%)     1106.2  ±1.6% (  38.1%)      816.8  ±4.0% (   2.0%)
8       1595.3  ±2.0%    2322.0  ±0.8% (  45.5%)     1807.8  ±1.5% (  13.3%)     2656.1  ±1.0% (  66.4%)     1684.1  ±1.0% (   5.5%)
16      3246.7  ±1.1%    4458.2  ±0.5% (  37.3%)     3481.4  ±0.4% (   7.2%)     4937.5  ±0.3% (  52.0%)     3249.9  ±0.4% (   0.1%)
32      6315.4  ±0.3%    6730.0  ±2.0% (   6.5%)     6014.9  ±0.2% (  -4.7%)     7257.5  ±0.5% (  14.9%)     6108.0  ±0.3% (  -3.2%)
64     13226.2  ±0.1%   13290.6  ±0.0% (   0.4%)    13488.9  ±0.2% (   1.9%)    13183.2  ±0.3% (  -0.3%)    13270.0  ±0.4% (   0.3%)
128    12063.0  ±0.6%   12087.0  ±0.2% (   0.2%)    11965.6  ±0.5% (  -0.8%)    11836.8  ±0.2% (  -1.8%)    11762.3  ±0.0% (  -2.4%)
192    11639.3  ±0.1%   11878.3  ±0.1% (   2.0%)    11668.1  ±0.1% (   0.2%)    11710.1  ±0.1% (   0.6%)    11703.7  ±0.1% (   0.5%)

UNIT: MBYTES_PER_SECOND
HIGHER is better
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dbench on 80x-BROADWELL-NUMA

                 5.0.0                       5.0.0                        5.0.0                        5.0.0                        5.0.0
               vanilla             turbo-all-cores         turbo-1-core-vincent      turbo-all-cores-vincent                 turbo-1-core

1         22.1  ±20.3%      21.4  ±12.3% (   3.1%)       21.4  ±11.0% (   3.0%)       21.3   ±9.3% (   3.3%)       21.5   ±9.9% (   2.8%)
2         29.6  ±16.2%      25.1  ±10.9% (  15.2%)       25.2  ±11.9% (  14.8%)       24.7  ±11.1% (  16.6%)       24.7  ±10.9% (  16.3%)
4         40.4  ±16.4%      33.1  ±18.0% (  18.0%)       32.5  ±17.5% (  19.5%)       33.1  ±17.2% (  17.9%)       32.7  ±17.8% (  18.9%)
8         62.2  ±24.9%      56.2  ±25.0% (   9.6%)       58.0  ±25.2% (   6.6%)       56.7  ±26.0% (   8.7%)       57.4  ±25.1% (   7.7%)
16       107.1  ±35.3%     102.5  ±35.5% (   4.2%)      103.1  ±35.6% (   3.7%)      103.0  ±35.5% (   3.8%)      102.8  ±35.6% (   3.9%)
32       212.8  ±48.5%     199.3  ±49.7% (   6.3%)      200.4  ±49.2% (   5.8%)      202.0  ±49.3% (   5.0%)      201.9  ±49.6% (   5.1%)
64       809.2  ±48.5%     720.7  ±53.5% (  10.9%)      747.6  ±50.4% (   7.6%)      734.9  ±50.1% (   9.1%)      730.7  ±52.8% (   9.6%)
128     2128.7  ±18.5%    2071.8  ±17.0% (   2.6%)     2058.9  ±16.6% (   3.2%)     2078.9  ±23.0% (   2.3%)     2080.3  ±16.6% (   2.2%)

UNIT: TIME_MSECONDS
LOWER is better

    1            2           4            8          16           32           64          128 
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kernbench on 48x-HASWELL-NUMA

                    5.0.0                     5.0.0                        5.0.0                       5.0.0                       5.0.0
                  vanilla           turbo-all-cores         turbo-1-core-vincent     turbo-all-cores-vincent                turbo-1-core

elps-2       393.5  ±0.2%     333.6  ±0.1% (  15.2%)      331.2  ±0.2% (  15.8%)      328.2  ±0.1% (  16.5%)      350.9  ±0.2% (  10.8%)
elps-4       200.5  ±0.2%     172.9  ±0.1% (  13.7%)      172.6  ±0.1% (  13.9%)      171.7  ±0.2% (  14.3%)      179.4  ±0.3% (  10.5%)
elps-8       103.5  ±0.5%      91.6  ±0.9% (  11.4%)       92.1  ±1.5% (  11.0%)       91.1  ±0.3% (  11.9%)       93.4  ±0.4% (   9.7%)
elps-16       57.5  ±0.7%      52.9  ±0.8% (   7.9%)       52.2  ±1.7% (   9.1%)       52.5  ±1.5% (   8.7%)       53.5  ±1.4% (   6.8%)
elps-32       38.8  ±1.5%      37.1  ±1.1% (   4.3%)       36.8  ±0.8% (   5.2%)       36.7  ±2.2% (   5.5%)       36.5  ±2.0% (   6.0%)
elps-64       33.9  ±2.5%      32.0  ±1.7% (   5.6%)       32.4  ±1.0% (   4.5%)       31.7  ±1.3% (   6.4%)       32.8  ±1.0% (   3.1%)
elps-96       34.6  ±0.4%      32.5  ±1.5% (   6.0%)       32.5  ±0.5% (   6.2%)       32.2  ±0.6% (   6.8%)       32.3  ±1.5% (   6.6%)

UNIT: TIME_SECONDS
LOWER is better
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gitsource on 8x-SKYLAKE-UMA

                    5.0.0                     5.0.0                        5.0.0                       5.0.0                       5.0.0
                  vanilla           turbo-all-cores         turbo-1-core-vincent     turbo-all-cores-vincent                turbo-1-core

Elapsed      976.9  ±7.2%     635.3  ±0.1% (  34.9%)      636.5  ±0.2% (  34.8%)      638.1  ±0.3% (  34.6%)      639.3  ±0.3% (  34.5%)

UNIT: TIME_SECONDS
LOWER is better
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possible explanation

● normalizing against a freq in turbo range makes core look 
artificially under-utilized

● scheduler gives it more work
● self-fulfilling prophecy: core goes boost

● NOTE: for the largest gains, the workload needs to be just the right 
size (see tables)

● but smaller or larger workloads do not regress
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runtime search for f-max

P. Zijlstra’s patch is defensive against machines not returning 
MSR_TURBO_RATIO_LIMIT

Q1: do we really have to expect that?

Q2: if yes, what runtime search for all-cores-active turbo level? Some 
fraction of observed f-max?
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all in all

● freq invariance is attained scaling things by f_curr / f_max
● x86: what is f_max?
● we pretend f_max is mild turbo (all-cores-active)
● large boosting opportunities are enabled for workloads of the right 

size
● plays well with Vincent Guittot’s new PELT invariance
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Still time?
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frequency scale invariance approximation

● the f_next formula today in (non-invariant) schedutil approximates 
scale invariance

● maybe that approximation is enough?
● some handwaving follows (no actual computations of the error)
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frequency scale invariance approximation

> schedutil formula

   > utilization is frequency invariant (ARM):

   > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util
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frequency scale invariance approximation

> schedutil formula

   > utilization is frequency invariant (ARM):

   

freqnext = 1.25 * freqmax * util
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frequency scale invariance approximation

> schedutil formula

   > utilization is frequency invariant (ARM):

       > rationale: make freqnext proportional to util

       > since 1.25 * 0.8 is 1, when util is 0.8 sets freq to max

       > we consider 80% a high utilization, so better speed up

       > note: after switching freq, utilization remains the same

freqnext = 1.25 * freqmax * util
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frequency scale invariance approximation

> schedutil formula

   > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqcurr * util
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frequency scale invariance approximation

> schedutil formula

   > utilization is not frequency invariant (x86):

       > derived from the invariant case, replace

       > approximation: utilraw is a PELT sum, each term needs

          to be scaled (with freqcurr at that time)

       > util
raw

 == 0.8 is the tipping point: less than 0.8 and freq goes

          down, more than 0.8 and freq goes up

freqnext = 1.25 * freqcurr * util

utilinv = utilraw * freqcurr / freqmax
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frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of 
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the 
new utilization U’ = W / F’ is 0.8.
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frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of 
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the 
new utilization U’ = W / F’ is 0.8.

0.8 = W / F’

 ⇨ F’ = 1.25 * W

 ⇨ F’ = 1.25 * F * U
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frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

   > water bucket: F is total volume, W is water volume

   > freq switching: F is current frequency, W is instructions per

      second (“useful work”).

   > if F is cycles per second, U = W / F would give instruction

      per cycle (IPC). Maybe?
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