
Frequency Scale Invariance on x86

Giovanni Gherdovich

ggherdovich@suse.cz
OSPM 2019
21/05/2019

2

performance @ SUSE, professional bias

● server workloads
● performance oriented

● assume PM patches meet energy-saving goals
● make sure performance trade-off is acceptable

● support x86, ARM, PPC, s390 (a.k.a. mainframe)
● grid continuously running performance regression testing
● current machine pool is ~15 Intel’s and 1 ARM
● AMD’s and PPC on the way to the team’s pool

3

outline

● concepts, definitions
● prototype patch
● test results

4

frequency scale invariance

Task running at half the freq takes twice the time ■ ▲…

… but util_avg is a function of running time…

… hence util_avg is ill-defined.

 ⇨ cannot be compared across CPUs or time

■ assuming performance is proportional to clock frequency

▲ if the machine is not saturated. If util is maxed out, we cannot quantify the compute demand

5

x86 situation

NOT F-INVARIANT F-INVARIANT

Q Q *
f
curr

f
max

PROBLEM: in x86 fmax is not a constant:
 turbo states availability depends on neighboring cores

6

proposed approaches

1. normalize against 1-active-core turbo level (max turbo)

2. normalize against all-cores-active turbo level

3. use power data (RAPL) to infer max available freq
● AVX workloads don’t even reach nominal freq

4. keep average of recent past and normalize against that

7

proposed approaches

1. normalize against 1-active-core turbo level (max turbo)

2. normalize against all-cores-active turbo level

3. use power data (RAPL) to infer max available freq
● AVX workloads don’t even reach nominal freq

4. keep average of recent past and normalize against that

8

V. Guittot’s new PELT invariance

scale invariance via dilating time (at RQ level)

● the lower the frequency, the less PELT segments we have
● but ONLY if RQ is not idle. Idle time is not warped.

delta = time since last PELT update
delta *= freq_percent

absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
@ max capacity ------******---------------******---------------
@ half capacity ------************---------************---------
clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16

9

querying the hardware for OPP

DEFINITIONS

base frequency: max non turbo OPP.
APERF: counter spinning at actual core frequency. Stops at idle.
MPERF: counter spinning at base frequency. Stops at idle.
TSC: exactly like MPERF but doesn’t stop at idle.

FORMULAS

Avg_MHz = delta_APERF / delta_time = delta_APERF * base_freq / delta_TSC
Busy% = delta_MPERF / delta_TSC
Busy_MHz = delta_APERF / delta_MPERF * base_freq

10

patch description

READ aperfΔ
READ mperfΔ

freq_percent =

 =

IF freq_percent > 1

 freq_percent = 1

WRITE freq_percent TO THIS CPU

BusyMHz

freq_max

aperf freq_baseΔ
mperf freq_maxΔ

*

AT SCHED TICK

PER-CPU VARIABLE : freq_percent
CONSTANT : freq_max

GLOBAL STATE

delta = time since last PELT update
delta *= freq_percent
...

AT PELT UPDATE

util_avg

load_avg

util_est OPP selection

load balancing

Wake-up path

11

machine descriptions and setup

● 8x-SKYLAKE-UMA
● 4 cores (8 threads) Skylake (2015), single socket, 32G of memory, SSD storage

● 80x-BROADWELL-NUMA
● 40 cores (80 threads) Broadwell (2014), two sockets, 512G of memory, SSD storage

● 48x-HASWELL-NUMA
● 24 cores (48 threads) Haswell (2013), two sockets, 64G of memory, rotary disk

baseline kernel: v5.0

cpufreq driver/governor: intel_pstate passive (aka intel_cpufreq) / schedutil

filesystem: XFS

12

neutral benchmarks

● pgbench read / write
● flexible I/O (FIO)
● NAS Parallel Benchmarks (NPB) using MPI, some computational

kernels
● NPB using OpenMP, some computational kernels
● netperf on TCP (loopback)

13

non-neutral benchmarks
BENCHMARK 1 x SKYLAKE

8 CORES
2 x BROADWELL

80 CORES
2 x HASWELL

48 CORES
UNIT BETTER IF

pgbench-ro 0.99 1 1 0.99 1.16 1.01 1.15 1.02 1.18 1.07 1.21 1.04 TRANS_PER_SECOND higher

sqlite 1.02 1.02 1.01 1.01 1.07 1.07 1.08 1.07 1.20 1.20 1.20 1.19 TRANS_PER_SECOND higher

dbench 1 1 1 0.99 0.91 0.92 0.91 0.91 0.94 0.95 0.94 0.94 TIME_MSECONDS lower

nas-mpi-cg 1 0.99 1 1 0.99 0.99 1 1 1 1 1.02 1 TIME_SECONDS lower

nas-mpi-lu 1 0.99 1 1 1 1 1.01 1 1 0.99 1 1 TIME_SECONDS lower

nas-mpi-mg 1 0.99 1 1 1 1 0.99 1 1.01 1 1.01 0.99 TIME_SECONDS lower

nas-mpi-sp 1 0.99 1 1 1 1 1 1 1 1 1 1 TIME_SECONDS lower

nas-omp-cg 1.01 1 1.01 1 1 0.99 1 1 0.99 0.99 1.01 1 TIME_SECONDS lower

nas-omp-lu 1.01 1 1.01 1 1 1.13 1.13 1.03 1.04 0.97 1.04 1.04 TIME_SECONDS lower

nas-omp-mg 1.01 1 1.01 1 1 0.99 0.99 0.99 1 1 1.01 1 TIME_SECONDS lower

nas-omp-sp 1.01 1 1.01 1 1.02 1 1.02 1.02 0.99 1.02 1.01 0.99 TIME_SECONDS lower

nas-omp-ua 1.01 1 1.01 1 1.02 0.99 1 1 0.98 1.01 0.97 0.99 TIME_SECONDS lower

netperf-udp 1.02 0.99 0.99 1.01 1.01 0.99 1.02 1.06 1.10 1.07 0.98 1.16 MBITS_PER_SECOND higher

tbench 1.14 1.12 1.16 1.10 1.30 1.03 1.48 0.99 1.12 1.03 1.20 1.01 MBYTES_PER_SECOND higher

hackbench-process-pipes 1.01 0.99 1.01 0.98 0.71 1 1 0.82 1 0.99 1 0.95 TIME_SECONDS lower

kernbench 0.98 0.97 0.98 0.98 0.84 0.84 0.84 0.84 0.92 0.91 0.91 0.93 TIME_SECONDS lower

gitsource 0.65 0.65 0.65 0.65 0.47 0.47 0.48 0.47 0.68 0.68 0.67 0.66 TIME_SECONDS lower

statistically significant meh statistically significant

TURBO-ALL-CORES
TURBO-1-CORE-VINCENT
TURBO-ALL-CORES-VINCENT
TURBO-1-CORE

14

non-neutral benchmarks
BENCHMARK 1 x SKYLAKE

8 CORES
2 x BROADWELL

80 CORES
2 x HASWELL

48 CORES
UNIT BETTER IF

dbench 1 1 1 0.99 0.91 0.92 0.91 0.91 0.94 0.95 0.94 0.94 TIME_MSECONDS lower

tbench 1.14 1.12 1.16 1.10 1.30 1.03 1.48 0.99 1.12 1.03 1.20 1.01 MBYTES_PER_SECOND higher

kernbench 0.98 0.97 0.98 0.98 0.84 0.84 0.84 0.84 0.92 0.91 0.91 0.93 TIME_SECONDS lower

gitsource 0.65 0.65 0.65 0.65 0.47 0.47 0.48 0.47 0.68 0.68 0.67 0.66 TIME_SECONDS lower

statistically significant meh statistically significant

TURBO-ALL-CORES
TURBO-1-CORE-VINCENT
TURBO-ALL-CORES-VINCENT
TURBO-1-CORE

15

tbench on 48x-HASWELL-NUMA

 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
 vanilla turbo-all-cores turbo-1-core-vincent turbo-all-cores-vincent turbo-1-core

1 199.1 ±0.4% 205.0 ±0.6% (2.9%) 199.0 ±0.6% (-0.0%) 221.8 ±3.1% (11.3%) 200.3 ±1.3% (0.5%)
2 389.5 ±0.4% 414.5 ±0.9% (6.4%) 402.5 ±0.5% (3.3%) 471.7 ±2.9% (21.0%) 400.4 ±0.3% (2.7%)
4 800.7 ±1.7% 916.2 ±2.9% (14.4%) 832.0 ±0.7% (3.9%) 1106.2 ±1.6% (38.1%) 816.8 ±4.0% (2.0%)
8 1595.3 ±2.0% 2322.0 ±0.8% (45.5%) 1807.8 ±1.5% (13.3%) 2656.1 ±1.0% (66.4%) 1684.1 ±1.0% (5.5%)
16 3246.7 ±1.1% 4458.2 ±0.5% (37.3%) 3481.4 ±0.4% (7.2%) 4937.5 ±0.3% (52.0%) 3249.9 ±0.4% (0.1%)
32 6315.4 ±0.3% 6730.0 ±2.0% (6.5%) 6014.9 ±0.2% (-4.7%) 7257.5 ±0.5% (14.9%) 6108.0 ±0.3% (-3.2%)
64 13226.2 ±0.1% 13290.6 ±0.0% (0.4%) 13488.9 ±0.2% (1.9%) 13183.2 ±0.3% (-0.3%) 13270.0 ±0.4% (0.3%)
128 12063.0 ±0.6% 12087.0 ±0.2% (0.2%) 11965.6 ±0.5% (-0.8%) 11836.8 ±0.2% (-1.8%) 11762.3 ±0.0% (-2.4%)
192 11639.3 ±0.1% 11878.3 ±0.1% (2.0%) 11668.1 ±0.1% (0.2%) 11710.1 ±0.1% (0.6%) 11703.7 ±0.1% (0.5%)

UNIT: MBYTES_PER_SECOND
HIGHER is better

16

dbench on 80x-BROADWELL-NUMA

 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
 vanilla turbo-all-cores turbo-1-core-vincent turbo-all-cores-vincent turbo-1-core

1 22.1 ±20.3% 21.4 ±12.3% (3.1%) 21.4 ±11.0% (3.0%) 21.3 ±9.3% (3.3%) 21.5 ±9.9% (2.8%)
2 29.6 ±16.2% 25.1 ±10.9% (15.2%) 25.2 ±11.9% (14.8%) 24.7 ±11.1% (16.6%) 24.7 ±10.9% (16.3%)
4 40.4 ±16.4% 33.1 ±18.0% (18.0%) 32.5 ±17.5% (19.5%) 33.1 ±17.2% (17.9%) 32.7 ±17.8% (18.9%)
8 62.2 ±24.9% 56.2 ±25.0% (9.6%) 58.0 ±25.2% (6.6%) 56.7 ±26.0% (8.7%) 57.4 ±25.1% (7.7%)
16 107.1 ±35.3% 102.5 ±35.5% (4.2%) 103.1 ±35.6% (3.7%) 103.0 ±35.5% (3.8%) 102.8 ±35.6% (3.9%)
32 212.8 ±48.5% 199.3 ±49.7% (6.3%) 200.4 ±49.2% (5.8%) 202.0 ±49.3% (5.0%) 201.9 ±49.6% (5.1%)
64 809.2 ±48.5% 720.7 ±53.5% (10.9%) 747.6 ±50.4% (7.6%) 734.9 ±50.1% (9.1%) 730.7 ±52.8% (9.6%)
128 2128.7 ±18.5% 2071.8 ±17.0% (2.6%) 2058.9 ±16.6% (3.2%) 2078.9 ±23.0% (2.3%) 2080.3 ±16.6% (2.2%)

UNIT: TIME_MSECONDS
LOWER is better

 1 2 4 8 16 32 64 128

17

kernbench on 48x-HASWELL-NUMA

 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
 vanilla turbo-all-cores turbo-1-core-vincent turbo-all-cores-vincent turbo-1-core

elps-2 393.5 ±0.2% 333.6 ±0.1% (15.2%) 331.2 ±0.2% (15.8%) 328.2 ±0.1% (16.5%) 350.9 ±0.2% (10.8%)
elps-4 200.5 ±0.2% 172.9 ±0.1% (13.7%) 172.6 ±0.1% (13.9%) 171.7 ±0.2% (14.3%) 179.4 ±0.3% (10.5%)
elps-8 103.5 ±0.5% 91.6 ±0.9% (11.4%) 92.1 ±1.5% (11.0%) 91.1 ±0.3% (11.9%) 93.4 ±0.4% (9.7%)
elps-16 57.5 ±0.7% 52.9 ±0.8% (7.9%) 52.2 ±1.7% (9.1%) 52.5 ±1.5% (8.7%) 53.5 ±1.4% (6.8%)
elps-32 38.8 ±1.5% 37.1 ±1.1% (4.3%) 36.8 ±0.8% (5.2%) 36.7 ±2.2% (5.5%) 36.5 ±2.0% (6.0%)
elps-64 33.9 ±2.5% 32.0 ±1.7% (5.6%) 32.4 ±1.0% (4.5%) 31.7 ±1.3% (6.4%) 32.8 ±1.0% (3.1%)
elps-96 34.6 ±0.4% 32.5 ±1.5% (6.0%) 32.5 ±0.5% (6.2%) 32.2 ±0.6% (6.8%) 32.3 ±1.5% (6.6%)

UNIT: TIME_SECONDS
LOWER is better

18

gitsource on 8x-SKYLAKE-UMA

 5.0.0 5.0.0 5.0.0 5.0.0 5.0.0
 vanilla turbo-all-cores turbo-1-core-vincent turbo-all-cores-vincent turbo-1-core

Elapsed 976.9 ±7.2% 635.3 ±0.1% (34.9%) 636.5 ±0.2% (34.8%) 638.1 ±0.3% (34.6%) 639.3 ±0.3% (34.5%)

UNIT: TIME_SECONDS
LOWER is better

19

possible explanation

● normalizing against a freq in turbo range makes core look
artificially under-utilized

● scheduler gives it more work
● self-fulfilling prophecy: core goes boost

● NOTE: for the largest gains, the workload needs to be just the right
size (see tables)

● but smaller or larger workloads do not regress

20

runtime search for f-max

P. Zijlstra’s patch is defensive against machines not returning
MSR_TURBO_RATIO_LIMIT

Q1: do we really have to expect that?

Q2: if yes, what runtime search for all-cores-active turbo level? Some
fraction of observed f-max?

21

all in all

● freq invariance is attained scaling things by f_curr / f_max
● x86: what is f_max?
● we pretend f_max is mild turbo (all-cores-active)
● large boosting opportunities are enabled for workloads of the right

size
● plays well with Vincent Guittot’s new PELT invariance

22

Still time?

23

frequency scale invariance approximation

● the f_next formula today in (non-invariant) schedutil approximates
scale invariance

● maybe that approximation is enough?
● some handwaving follows (no actual computations of the error)

24

frequency scale invariance approximation

> schedutil formula

 > utilization is frequency invariant (ARM):

 > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqmax * util

freqnext = 1.25 * freqcurr * util

25

frequency scale invariance approximation

> schedutil formula

 > utilization is frequency invariant (ARM):

freqnext = 1.25 * freqmax * util

26

frequency scale invariance approximation

> schedutil formula

 > utilization is frequency invariant (ARM):

 > rationale: make freqnext proportional to util

 > since 1.25 * 0.8 is 1, when util is 0.8 sets freq to max

 > we consider 80% a high utilization, so better speed up

 > note: after switching freq, utilization remains the same

freqnext = 1.25 * freqmax * util

27

frequency scale invariance approximation

> schedutil formula

 > utilization is not frequency invariant (x86):

freqnext = 1.25 * freqcurr * util

28

frequency scale invariance approximation

> schedutil formula

 > utilization is not frequency invariant (x86):

 > derived from the invariant case, replace

 > approximation: utilraw is a PELT sum, each term needs

 to be scaled (with freqcurr at that time)

 > util
raw

 == 0.8 is the tipping point: less than 0.8 and freq goes

 down, more than 0.8 and freq goes up

freqnext = 1.25 * freqcurr * util

utilinv = utilraw * freqcurr / freqmax

29

frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the
new utilization U’ = W / F’ is 0.8.

30

frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

You’re given a bucket F with some water W. Let’s call U the ratio of
water volume by the total:

U = W / F

Find the volume of a new bucket F’ to pour the water into so that the
new utilization U’ = W / F’ is 0.8.

0.8 = W / F’

 ⇨ F’ = 1.25 * W

 ⇨ F’ = 1.25 * F * U

31

frequency scale invariance approximation

> analogy for the non invariant case: bucket of water

 > water bucket: F is total volume, W is water volume

 > freq switching: F is current frequency, W is instructions per

 second (“useful work”).

 > if F is cycles per second, U = W / F would give instruction

 per cycle (IPC). Maybe?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

