OSPM Summit
April 3rd, 2017
Pisa, IT

About the Need to Power Instrument the Linux Kernel e L

System Power Management Expert,
BayLibre co-founder.

http://www.baylibre.com/

Today’s Special

Introduction

Power Instrumentation:
" Why?

* What’'s needed?

= What's available?

* What's missing?
Conclusion & Next Steps
Q&A

Introduction

A major issue the Linux Community faces regarding power
management is the lack of power data and instrumentation

" Dev boards missing probe points

" Power Measurement equipment expensive / not affordable for many
developers,

" Poor power data publicly available

This situation is not expected to change in the future

" Believed that it is only of interest of a handful of developers, where
actually everyone is concerned!

This is forcing ad hoc/custom techniques to be used over and over
again.

Even if not much can be done on the HW side, power instrumenting
the Linux Kernel with standard tooling could definitively help.

Power Instrumentation:
Why?

&

Power Instrumentation: Purposes (1)

"= Holy grail #1: enable dynamic measurement (estimation) of the
platform power consumption / battery life, without any power
measurement circuitry

" Any developer could debug power management on any board, with no
need of a special (expensive) board

Power Instrumentation: Purposes (2)

* Detect power leaks by dynamically monitoring (tracking) devices
power state (Active / Idle / Disabled)

* Unnecessary running clocks
" Unnecessary running devices

Inadequate CPUFreq/CPUldle states

" CPU cores running too fast, low-power C-States not entered

Unnecessary powered-on regulators

Power Instrumentation: Purposes (3)

= Capture system power trace, and post-process it to
" (Generate use-case power statistics,

" Generate power charts
" Enable more efficient power debugging

" Enable power consumption regression tracking automation

* |ntegrate Continuous Integration (Cl) frameworks (KernelCl, PowerCl,
fuego, ...)

Power Instrumentation: Purposes (4)

* Model nextgen platform power consumption

" Applying power data of next SoC revision to an existing power trace

* (... We could even imagine comparing platforms to platforms ... ©)

Power Instrumentation: Purposes (5)

* Holy Grail #2: closed-loop power management policies

" Prediction may be improved by measuring the “real” impact of
heuristics decisions on platform power consumption

" E.g. EAS (Energy-Aware Scheduler) platform knowledge could be extended
beyond CPU cores

* Could open the door to self-learning policies / IA / deep learning

* No more need to fine-tune policies by hand, just let the policies learn the
platform!

Power Instrumentation:
What’s needed?

&

What's needed? (1)

1. SW Power Probe points

* Regulator / Clock / Power Domain / CPU Frequency / CPU lIdle / device /
GPIO / ... power transitions

" Timestamped

(a

What's needed? (2)

2. Power consumption data

* How much power is consumed by a given device in a given power state

* SoC internal peripherals (CPU, GPU, RAM, UART, 12C, SPI, GPIO, ...)
* E.g. UART devices consumes 5uW (*) when suspended, 100uW (*) when active

* Platform peripherals (LCD display, wireless devices, flash devices, sensors, ...)

* E.g. eMMC device consumes 500uW (*) when suspended, 40mW (*) when
active

* Empirical data, for illustrative purpose only

What's needed? (3)

3. Power Analysis Tools
" Power trace plotting
" Power trace statistics post-processing

* Generic / Cross-platform Tools
* Vendors already have some custom tools of their own, e.g.
" Qualcomm'’s (requires Android)
* Google’s (may require Android too ©)

https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.android.com/studio/profile/android-monitor.html

Power Instrumentation:
What’s available?

&

FTrace Power Events (1)

= Kernel Probe Points

* FTrace standard power events

RuntimePM events (idle/resume/suspend),

Clock Management events (enable/disable/set_rate),

CPU power management events (cpuidle/cpufreg/hotplug),
Suspend/Resume events,

Regulator events (enable/disable/set_voltage),

GPIO events (direction/value).

" FTrace custom events

Specific for a given platform

FTrace Power Events (2)

To trace power events with FTrace
* Enable CONFIG_FTRACE, CONFIG_DYNAMIC FTRACE flags in kernel .config file

" Mount debugfs
mount -t debugfs nodev /sys/kernel/debug

* Enable relevant events
echo 1 > /sys/kernel/debug/tracing/events/power/enable

* Empty trace buffer
echo > /sys/kernel/debug/tracing/trace

* Enable tracing
echo 1 > /sys/kernel/debug/tracing/trace_on

* Trace file /sys/kernel/debug/tracing/trace generated with enabled power
events

* Note that debugfs interface is used for educational purpose here, but “trace-cmd” binary tool can be used.

FTrace Power Events (3

= Example of collected power trace

tracer: nop

entries-in-buffer/entries-written: 151941/151941 #P:4

#

- => irqs-off

/ _— > need-resched

| /7 _ > hardirg/softirq

|| / _——=> preempt-depth

[l 7 delay

LH# TASK-PID CPU# ||]|] TIMESTAMP FUNCTION

. | i |

irq/676-1sm330d-2917 [002] d..2 117.306631: clock_disable: gcc_blspl_qup6_i2c_apps_clk state=0 cpu_id=2
<idle>-0 [001] d..2 117.306646: cpu_power_select: idx:1 sleep_time:211893 latency:91 next_event:@
<idle>-0 [001] d..2 117.306655: cpu_idle: state=1 cpu_id=1
irq/676-1sm330d-2917 [002] d..3 117.306657: clock_disable: blspl_qup6_i2c_apps_clk_src state=0 cpu_id=2

<idle>-0 [001] d..2 117.306662: cpu_idle: state=1 cpu_id=1

| <idle>-0 [001] d..2 117.306677: cpu_idle_enter: idx:1

| irq/676-1sm330d-2917 [002] d..2 117.306686: clock_disable: gcc_blspl_ahb_clk state=0 cpu_id=2

| 1rq/676-1sm330d-2917 [002] d..2 117.306712: rpm_suspend: 757a000.i2c flags—-d cnt-@ dep-0 auto-1 p-@ irg-@ child-@

| irq/676-1sm330d-2917 [002] d..2 117.306718: rpm_return_int: rpm_suspend+@x36c/0x44c:757a000.i2c ret=0

| <idle>-0 [000] .n.2 117.306808: cpu_idle: state=4294967295 cpu_id=0

| <idle>-0 [001] dn.2 117.307118: cpu_idle_exit: idx:1 success:1
<idle>-0 [001] dn.2 117.307133: cpu_idle: state=4294967295 cpu_id=1

| <idle>-0 [002] d..2 117.307153: cpu_power_select: idx:1 sleep_time:9972 latency:91 next_event:0

| <idle>-0 [001] .n.2 117.307155: cpu_idle: state=4294967295 cpu_id=1

| <idle>-0 [002] d..2 117.307163: cpu_idle: state=1 cpu_id=2
<idle>-0 [002] d..2 117.307172: cpu_idle: state=1 cpu_id=2
<idle>-0 [002] d..3 117.307236: cluster_enter: cluster_name:perf idx:1l sync:@xc child:@xc idle:1

| <idle>-0 [002] d..2 117.307244: cpu_idle_enter: idx:1

| 1rq/489-d3-i2c—147 [001] d..2 117.307275: clock_disable: gcc_blsp2_qup2_i2c_apps_clk state=@0 cpu_id=1

1 irq/489-d3-i2c—147 [001] d..3 117.307304: clock _disable: blsp2_qup2_i2c_apps_clk_src state=0 cpu_id=1

. 1rq/489-d3-i2c—147 [001] d..2 117.307347: rpm_suspend: 75b6000.i2c flags—d cnt-@ dep-@ auto-1 p-@ irg-@ child-@

{ 1irq/489-d3-i2c—147 [001] d..2 117.307355: rpm_return_int: rpm_suspend+@x36c/0x44c:75b6000.i2c ret=0

I irq/489-d3-i2c—147 [001] d..2 117.307385: rpm_resume: 75b6000.i2c flags-4 cnt-1 dep-@ auto-1 p-@ irq-0 child-@

[.]

ksoftirqd/0-3 [000] d.s3 117.328513: cpufreq_interactive_cpuload: cpu=0 load=27 new_task_pct=0
ksoftirqd/0-3 [000] d.s3 117.328518: cpufreq_interactive_cpuload: cpu=1 load=16 new_task_pct=0
ksoftirqd/0-3 [000] d.s2 117.328543: cpufreq_interactive_already: cpu=0 load=27 cur=307200 actual=307200 targ=307200
ksoftirqd/0-3 [000] d.s3 117.328606: cpufreq_interactive_cpuload: cpu=2 load=4 new_task_pct=0
| ksoftirqd/0-3 [000] d.s3 117.328611: cpufreq_interactive_cpuload: cpu=3 load=0 new_task_pct=0
ksoftirqd/0-3 [000] d.s2 117.328620: cpufreq_interactive_already: cpu=2 load=4 cur=307200 actual=307200 targ=307200

[w]
kworker/u8:10-3032 [000] ...1 117.328805: memlat_dev_meas: dev: soc:qcom,memlat-cpu@, id=0, inst=227896, mem=783, freq=36, ratio=291
kworker/u8:10-3032 [000] ...1 117.328812: memlat_dev_meas: dev: soc:qcom,memlat-cpu@, id=1, inst=17928, mem=50, freq=0, ratio=358
kworker/u8:10-3032 [000] ...1 117.328887: memlat_dev_meas: dev: soc:qcom,memlat-cpu2, id=2, inst=37313, mem=132, freq=10, ratio=282
kworker/u8:10-3032 [000] ...1 117.328891: memlat_dev_meas: dev: soc:qcom,memlat-cpu2, id=3, inst=0, mem=0, freq=0, ratio=0

FTrace Power Events (4)

= References:
" https://www.kernel.org/doc/Documentation/trace/ftrace.txt
" https://www.kernel.org/doc/Documentation/trace/events-power.txt
" http://elinux.org/Ftrace

" https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon
_jp2010_rostedt.pdf

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/events-power.txt
http://elinux.org/Ftrace
https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon_jp2010_rostedt.pdf
https://events.linuxfoundation.org/slides/2010/linuxcon_japan/linuxcon_jp2010_rostedt.pdf

Power Instrumentation:
What’s missing?

&

Missing Power “Database” (1)

" Power consumed by all devices of the platform, in any power state

" Not much data published so far, whereas critical

* Usually only battery lifetime for selected use-cases

" Multi-platform database

* Mandatory, to enable generic/standard tools

" Example (empirical data, for illustrative purpose only)

cat [..]/ftpwrdec/configs/armé64/arm/juno.pdb

This is a sample power database file, in a human-readable format.

Device power data format: name (as listed in ftrace), active_pwr (uW) suspended pwr (uW)

devA, 10000, 10

devB, 1230000, 20

CPU power data format: cluster id (as listed in ftrace), cpu id (as listed in ftrace), [frequency
(MHz), power (uW)] ...

0, 0, [600, 300000], [900, 800000], [1200, 1200000]

1, 0, [200, 100000], [300, 150000], [500, 200000]

" Note Android already manages similar power database

(8

’

* power profile, defined
in platform/frameworks/base/core/res/res/xml/power_profile.xml

Missing Power “Database” (2)

" Device Tree could also be a candidate
" Device Tree #1 purpose IS to describe the platform to the kernel,

" Generic / Stable / Multi-platform,

* Mandatory for new platforms, existing platforms progressively converted

" « Just a single attribute » to be added to device attributes

cat arch/arm/boot/dts$ cat omap4-panda-common.dtsi
/A
[.]
&uart2 {
[.]
active-power = <200>; /* [1] */
suspended-power = <5>; /* [1] */
}i
&hdmi {
active-power = <7000>; /* [1] */
suspended-power = <30>; /* [1] */

[1] Empirical data, for illustrative purpose only
6

Missing Power “Database” (3)

" Power data in Device Tree could be reused by other Kernel
components.

" FTrace
" E.g. power data added to the trace log

= Kernel power management policies could reuse it
* EAS (Energy-Aware Scheduler) / Closed-loop heuristics / deep learning algorithms
" Also accessible from userspace
" /proc/device-tree/
= Existing libraries to read DT attributes, e.g. https://github.com/jviki/dtree

= PBut

* Could be more difficult to maintain if part of the kernel

" Longer review process
* How would device tree maintainers test/validate the data?

(5

’

FTrace « descrambling » tool (1)

Static trace analysis
1. Generate power statistics,

2. Reformat power trace for standard or dedicated plotting tools

" Multi-platform

* To handle custom power events and reuse power consumption database
" Could be run directly on the platform or on a host machine

* Very useful for automation / Continuous Integration /power regression
tracking

* Build servers automatically run target use-cases, capture trace, generate
the analysis, and generate reports highlighting regressions

"= Power consumption issues could be automatically detected upfront

(5

’

FTrace « descrambling » tool (2)

" Example

./ftpwrdec --plat=arm-juno mypowerftrace
Valid trace file found, descrambling it.. done.

Statistics	Min	Max	Avg	Count
Power Consumption	50mWw	2000mW	530mW	
cPU Loads				
cpuo	12%	42%	27%	
cpul	05%	35%	20%	
CPU Idle Time				
cpuo	10ms	543ms	121ms	
cpul	44ms	876ms	465ms	
CPU Frequencies				
cpuo	300MHz	800MHz		
cpul	300MHz	800MHz		
CPU Frequency Changes				88
Active Devices	05	10		
Device Power Transitions				69
Active Clocks	20	30		
Clock Transitions				50
T				

'Mypowerftrace.xyz’ data plotting file generated.
Done.

6

FTrace Power Visualization Tool (1)

= Static analysis of a trace is not sufficient

" We need a visualization tool that could help us understand the
dynamics of the system

" Like kernelshark does for cpu processes

= Plotting in a smart way power events together with the power
consumption
" Pointing a data point on the power consumption curve may highlight
" Power consumption,
* Current device power states,
* Changes compared to previous data point,

FTrace Power Visualization Tool (2)

CPU1 Load (%) /_m /\
CPUO Load (%) /—_._-———/ﬁ AN

CPU Speed (MHz) / \
Active CPU Count ~
GPU Rate (MHz) ~ N~
GPU State
Clock2Rate (MHz) ______~—
Device2 State .~ T
Clock1 Rate (MHz) _—————~
Device1 State . .

Active Device Count

GPIO2Value -~

Power Consumption (mW)

1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
* Empirical data, for illustration purpose only

FTrace Power Visualization Tool (2)

CPU1 Load (%) /_m /\
CPUO Load (%) /w—/_\ /\

CPU Speed (MHz) / \
Active CPU Count
GPU Rate (MHz) v N~
GPU State

Clock2 Rate (MHz)
Device2 State
Clock1 Rate (MHz) _—————~
Device1 State . .

Active Device Count

GPIO2Value -~

Power: 1280mW

Active Devices: 10 (GPU, ...)
Active Clocks: 42 (GPU (600 MHz), ...)
Active CPU Count: 2 (1.6 GHz)

CPU Loads: 10% (0), 25% (1)

CPU Running Process:
Twitter (0), Pokemon Go (1)

Power Consumption (mW)

1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
* Empirical data, for illustration purpose only

FTrace Power Visualization Tool (3)

CPU1 Load (%) /_m /\
CPUO Load (%) /w—/_\ /\

CPU Speed (MHz) / \
Active CPU Count
GPU Rate (MHz) v N~
GPU State

Clock2 Rate (MHz)
Device2 State
Clock1 Rate (MHz) _—————~
Device1 State . .

Active Device Count

GPIO2Value -~

Power: 911TmW
Active Devices: 9 (GPU, ...)

Active Clocks: (GPU (600 MHz), ...)
Active CPU Count: 2 (1.0 GHZ)
CPU Loads: 10% (0), 0% (1)

CPU Running Process:

Facebook (0), Idle (1)

Power Consumption (mW)

1 2 3 4 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
* Empirical data, for illustration purpose only

Power Instrumentation:
Conclusion & What’s Next?

&

Summary

* PBright side:

" Linux kernel has all infrastructure in place for power instrumentation
" FTrace power / scheduling / performance / events
* More relevant events may be relatively easy to be added

* Tracing performance impact limited to RAM usage

* Dark Side:
* Missing power consumption data

* Missing standard analysis/plotting userspace tools

Next Steps

Next Steps
1. Collect more feedback and interest from experts during OSPM,
2. Define the power database (incl. device tree vs userspace DB),
* Probably the most difficult step as it will require a lot of experimentation,
and support from vendors
Develop FTrace power events post-processing tool,
4. Develop power trace visualization tool, and...

Make it the de-facto standard tool for power debugging ©

Q&A

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

