
A unified solution for SoC idling
- how far have we come!?

Ulf Hansson, Linaro

• Introduction to SoC idling.
• A top-level overview.
• Some important infrastructure changes for ARM SoC PM code.
• The runtime PM centric approach.
• An update on the generic PM domain.
• An update on the unified solution to SoC idling - CPU cluster PM.
• Next challenges.

Agenda

● CPU scheduling are important while saving energy, but..
● .. lots of other resources needs to enter low power state when idle.

Avoid wasting power when idle!

What is SoC idling?

• System PM (system wide with all devices)
• Runtime PM (fine grained for any device that is inactive)
• PM domain (genpd, ACPI, etc)
• Device PM QoS (latency constraints per device)
• Device wakeup/wakeirq (wakeup settings for devices)

The involved PM frameworks

• Make collaboration of runtime PM and system PM better.

• Simplify for driver authors to deploy PM support.

• Evolve and modernize the generic PM domain.

• Various optimizations.

• Deployment to provide references (nowadays lots of references).

Enable upstreaming of ARM SoC PM code

• When the low power state of a device is similar for runtime PM and system PM.

• Re-use runtime PM callbacks for system PM, - hence the “runtime PM centric

approach”.

• Don’t unnecessary resume the device from system PM, but defer to runtime PM.

Deploy runtime PM support - get system PM for “free”!

..don’t forget to deal with wakeups.

The runtime PM centric approach - what?

Mydrv.c:

static const struct dev_pm_ops mydrv_dev_pm_ops = {

SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,

 pm_runtime_force_resume)

SET_RUNTIME_PM_OPS(mydrv_ runtime_suspend,

mydrv_runtime_resume,

NULL)

};

That’s it!

The runtime PM centric approach - how?

Trend of usage:

• 3.15: 1 (introduced pm_runtime_force_suspend|resume())

• 3.18: 7

• 4.5: 16

• 4.11-rc4: 46

Some new ideas:

• Should the helpers respect device links (and not just parent/children)?

• Can drivers using “direct complete” convert to the runtime PM centric approach?

Benefit from the deferred resume, requires to adopt the ACPI PM domain (avoid

runtime resuming devices for these devices at system PM suspend).

The runtime PM centric approach - status

Trend of usage, includes SoC families:

• 3.18: 5

• 4.11-rc4: 19

Recent highlights:

• Minimized latencies in the power off sequence.

• IRQ safe domain support.

• Multiple domain idle states support.

The generic PM domain - status

● CPUIdle manages CPUs well, but does not scale for multi-cluster SMP systems
and heterogeneous systems like big.LITTLE.

And it gets more complicated...

CPU CPU

CPUCPU
Cache

PM Domain

CPU CPU

CPUCPU

Cache

 PM Domain

Coherency

 PM Domain

CacheCoreSight

The problem...

?

CPUIDLE
CPUIDLE

CPU

CPU

?
?

CPUIDLE
CPUIDLE

CPUIDLE
CPUIDLE

CPUIDLE
CPUIDLE

CPU CLUSTER COHERENCY

Platform
hacks

The solution...

CPUIDLE
CPUIDLE

CPU

CPU

Runtime PM Generic
PM Domain

CPUIDLE
CPUIDLE

CPUIDLE
CPUIDLE

CPUIDLE
CPUIDLE

CPU
PM domain

Platform Driver

CPU
CLUSTER &
COHERENCY

Completed:

• Infrastructure needed in the generic PM domain.

Under discussion:

• CPU PM domain.

• Deployment of runtime PM to support reference counting on the cluster.

• PSCI changes for OSI.

A unified solution to SoC idling - including CPUs 1/2

Next steps:

• Explore the approach for an ARM32 SoC.
• Deploy the unified SoC idling solution to the entire SoC topology.

Open areas:
• How to get “correct” data for the next wakeup in CPU PM domain governor?
• Is there any constraints for SCHED_DEADLINE we should consider?

• Something else?

A unified solution to SoC idling - including CPUs 2/2

• More than one PM domain attached per device.
• Performance states of PM domains.

• Improve management of wakeup IRQs in genpd.

• Other things?

SoC idling - next challenges

Thank you!
Ulf Hansson, Linaro

