
1 © ARM 2017

Improving PELT
Decay Clamping vs Utilization Estimation

Morten Rasmussen, Patrick Bellasi
<morten.rasmussen@arm.com> <patrick.bellasi@arm.com>

2 © ARM 2017

▪ Why PELT is not “good enough”
▪ Decay Clamping
▪ Utilization Estimation

Agenda

3 © ARM 2017

● Problem: Tasks with long sleep periods loose too much of their accumulated
utilization leading to wrong utilization estimates.

● Proposal: Ignore sleep time beyond a fixed threshold, essentially clamping the
utilization decay at wake-up.

● Discussed at LPC 2016. RFC proof-of-concept for evaluation is ready.

Decay Clamping

4 © ARM 2017

Analysis Decay Clamping: Android-like periodic task

No clamping

5 © ARM 2017

Analysis Decay Clamping: Android-like periodic task

32ms clamping

6 © ARM 2017

Analysis Decay Clamping: Android-like periodic task

4ms clamping

7 © ARM 2017

Analysis Decay Clamping: Long period task

64ms clamping

8 © ARM 2017

Analysis Decay Clamping: Long period task

32ms clamping

9 © ARM 2017

Analysis Decay Clamping: Long period task

16ms clamping

10 © ARM 2017

Proto-type: Long period task traced

Clamp = [345, 64, 32, 16]

11 © ARM 2017

Proto-type: Long period task schedutil performance
performance
clamp min max mean
345 30464 30742 30581
64 30515 30667 30582
32 30507 30811 30582
16 30501 30731 30578
util_est 30515 30809 30604

schedutil
clamp min max mean
345 42573 70093 66958
64 36402 68650 66787
32 32845 68774 64914
16 37921 50341 48603
util_est 34736 45223 44122

12 © ARM 2017

Proto-type: Long period task schedutil performance
No clamp 64ms

32ms 16ms

util_est

13 © ARM 2017

It has “fast dynamic”: it’s updated “every” time the scheduler has an opportunity
▪ makes somehow “instantly outdated” every decision we take

▪ it does not “consolidate information” about previous activations

It’s “slow”: a task waking-up after a long sleep has a small utilization (once enqueued)
▪ it takes tens of milliseconds to represent the CPU demand of that task

PELT: Why is not good enough?

14 © ARM 2017

Add an aggregator on top of the PELT estimator
▪ keep track of what “we learned” about task’s previous activations
▪ generate a “new” signal on top of PELT

Build a low-overhead statistic for SEs and CPUs
▪ Tasks, at dequeue_task_fair() time
▪ Root RQs, at {dequeue,enqueue}_task_fair time

since we are interested mainly on OPP selection

Use getter methods to define which signal to use
▪ {task,cpu}_util_est()

Tasks: max(util_avg, util_est.ewma, util_est.last)
CPUs: max(util_avg, util_est.last)

Utilization Estimation: Fundamental Idea

15 © ARM 2017

Patches going to be posted on LKML
▪ git://www.linux-arm.org/linux-pb.git eas/pelt/utilest

Evaluation consisting of synthetic workloads
(with[1] and without[2] utilest)

▪ Periodic (60% every 300ms)

▪ Ramp (5,25,45% every 100ms)

▪ Two tasks co-scheduled (50% every 400ms)

▪ Fake “render thread” (60% every 16ms)

▪ Migrating task (20% every 20ms)

Utilization Estimation: Initial Proposal

[1] https://gist.github.com/derkling/0d07b97ca18cc5eac25e51404e81169f
[2] https://gist.github.com/derkling/e1cfd776d310365528010563fb24b06a

Task’s util_avg
vs util_est

RQ util_avg vs
util_est

https://gist.github.com/derkling/0d07b97ca18cc5eac25e51404e81169f
https://gist.github.com/derkling/e1cfd776d310365528010563fb24b06a

16 © ARM 2017

A per-task policy can be used to select the estimation signal to be used, e.g.
▪ “boosted tasks” starts from max(ewma, last)
▪ “background tasks” always starts from the decayed util_avg

Experiment by tracking other metrics, instead of max currently aggregated
▪ we can experiment by tracking other metrics

e.g. (max-min)/2?

▪ can the util_est be used to “compensate” for stale utilization on idle CPUs
e.g. return a “virtually decayed” utilization on-demand (i.e. when we need to look at an idle CPU
NOTE: goal is to drive OPPs and tasks placement, thus perhaps it’s just enought to track top level RQs

Utilization Estimation: Possible Future Extensions

17 © ARM 2017

Backup Slides

