
1 © ARM 2017

SchedTune: Capacity Clamping
Why is needed and which API should we use?

Patrick Bellasi
<patrick.bellasi@arm.com>

2 © ARM 2017

▪ Introduction
problem and goals, Android use-case

▪ Proposal
new concepts, evaluated alternatives and supposed strengths

▪ Discussion
walking-through the main controversial points

▪ On-demand contents
implementation details, validation, future works, ...

Agenda

3 © ARM 2017

Feed context aware information about tasks requirements
from informed run-times to kernel-space

to improve existing decision policies for OPPs selections and tasks placement

Introduction
What is the problem on hand?

Informed Run-Time Resource Manager
e.g. Android, ChromeOS, Kubernets, etc...

App1 tasks App2 tasks App2 tasks

Run-Time Optimized Services
e.g. Android applications execution model

Linux kernel components
e.g. scheduler, schedutil, etc...

Constraints
OPP and Task Placement biasing

Monitoring

“TOP APP”“BACKGROUND APPS” Informed run-time managed applications
▪ resources partitioning

how many and which CPUs can an app use?
▪ apps/tasks priorities tuning

what is the priority of certain task?
▪ defined optimization goals

energy-saving vs performance-boosting
Manage transient configurations

▪ which app is now more important?
▪ Boost performances on certain events

e.g. touchboost, app startup

4 © ARM 2017

A set of concepts have been evaluated during the Pixel’s tuning exercise
▪ boost TA’s tasks: prefer more capable CPUs and run faster than required

tasks pinning is not possible for boosted apps: we still want all CPUs when available (i.e. best effort)
tasks reported as small by PELT can still benefit from a faster completion time (i.e. run at higher OPPs)

▪ prefer_idle for latency sensitive tasks
while still being energy-efficient when idle CPUs are not available at wakeup time

▪ experiments using “negative boosting”
controlled performance degradation (i.e. RTM reduces the resources => apps automatically adapt)

Energy-efficiency and Low Latencies are both required for different class of tasks
▪ depending on task status, e.g. TA vs BG

Introduction
The Android Use-Case

Neg Boosting No Boost Boosting

Energy Efficiency BG BG / SYS_BG FG (non TA)

Lower Latency Camera FG TA

5 © ARM 2017

Concept already available

Never poster on LKML

Proposal Concepts Mapping on Existing and New interfaces
Original Concepts Mapping within the CPU Controller

Boost value Using the existing cpu.shares attribute
- by default tasks have a 1024 share
- boosted tasks gets a share >1024 (more CPU time to run)
- negative boosted tasks gets <1024 (less CPU time to run)

OPP biasing Add a new cpu.min_capacity attribute
Tasks in the group are granted to be scheduled on a CPU which
provides at least the required minimum capacity

Negative boosting Add a new cpu.max_capacity attribute
Tasks in the group are never scheduled on a cpu with CPU capacity
higher that this value (at least while they are alone on that CPU)

CPU selection and
prefer_idle

The cpu.shares value can be used as a “flag” to know when a task is
boosted
e.g. is cpu.shares > 1024 (or threshold) we look for an idle CPU
The cpu.min_capacity can also bias the selection of a big CPU
The cpu.max_capacity can also bias the selection of a LITTLE CPU

Latencies reduction Tasks with higher cpu.shares value are entitled more CPU time and
this turns out to give them better chances to get scheduled by
preempting other tasks with lower shares.

NOTE: the CPU bandwidth not consumed by high cpu.shares value
tasks is still available for tasks with lower shares.

CPU utilization clamping
https://lkml.org/lkml/2017/2/28/355

Task Placement

Performance Boosting

https://lkml.org/lkml/2017/2/28/355
https://lkml.org/lkml/2017/2/28/355

6 © ARM 2017

Existing APIs seems to be limited:
▪ task’s affinity: enforce scheduling from user-space, too much aggressive for TOP_APP
▪ tasks priorities: mainly used to partition CPU time among RUNNABLE tasks
▪ cpusets and cpu controller: are the most promising

but they are not “feature-complete” to support biasing of OPP selection and tasks placement

we are looking for a “suitable extension”
to bias OPP selection and tasks placement

Initial solution[1] was proposing a complete new CGroup controller
▪ Tejun complained about compliance with CGroups v2
▪ PaulT and Tejun suggested to extend the cpu controller[2]

to get also a more consistent view about the “allocation of the CPU resource”

Proposal
What alternative ways have been considered?

[1] https://lkml.org/lkml/2016/10/27/503
[2] https://lkml.org/lkml/2016/11/25/342

https://lkml.org/lkml/2016/10/27/503
https://lkml.org/lkml/2016/11/25/342

7 © ARM 2017

Main benefits we thinks are:
▪ simple interface towards “informed run-time” with “context aware” info

which already uses CGroups to allocate resources to group or tasks (i.e. apps)

▪ builds biasing on top of existing policies
for both OPP biasing (current proposal) as well as task placement (with a future extension)

▪ enable the CPU controller to enforce min/max computational bandwidth
not only time computational time like what we have now

▪ by default, it does not enforce any new/different behavior
it just open to opportunistic tuning of CFS tasks whenever necessary

▪ it has almost negligible run-time overhead
mainly defined by the complexity of a couple or RBTree operations

Proposal
Why the current proposal has been chosen?

8 © ARM 2017

Does the concepts of capacity_min makes sense to have?

▪ doubts about being required just because of other bits being suboptimal
PELT under-estimating task demands, being slow, …
{cfs,rt}_{period,runtime}_us enforce only time, not actual computational bandwidth[1]

▪ is capacity_min really useful to define an energy-vs-performance tradeoff?
should be better a dedicated concept of per-task “boost value”?

▪ current implementation targets both FAIR and RT classes
does it makes sense to use it as a “best effort” extension to cfs/rt bandwidth controllers?

▪ it’s an API to “require for more”, thus potentially exploitable by user-space apps
should require special permissions to be used?

Discussion
Main controversial points (1/3)

[1] potentially, maybe they can be extended to be freq/arch invariant

Message-ID: <CAJZ5v0j4XiXP+oaoecG3BWy1iGkBXb+aB00nabGsrRMsN9n+DQ@mail.gmail.com

9 © ARM 2017

What is the proper semantic for capacity_{max,min}?

▪ how they should be inherited?
child geting same value of parent, could that work?

▪ how they should be restricted walking down a CGroup hierarchy?
capacity_max can only be smaller: matches bandwidth controllers delegation model
capacity_min can only be bigger

the rough idea is for contained tubgroups to not affect parent performances
this is the most controvertial sematinc… any good reason to do the opposite?

▪ is “capacity” a sufficiently generic concept across different platforms?
is it not normalized in any way between architectures?

Discussion
Main controversial points (2/3)

10 © ARM 2017

Is it appropriate to use CGroups as a primary interface?

▪ capacity_{min,max} are not limits on countable units of a specific resource
this is more likely an attribute range restriction controller
is it ok to use a “property restriction model” similar to the taskaffinity/cpusets one?

▪ apps should be allowed to set capacity_{min,max} without CGroups
do we really want to expose directly such an interface to apps?
does it makes sense to have apps, potentially non priviledged, using capacity_{min,max}?
which restrictions should be put in place?

▪ what can be a suitable “primary interface”?
Joel’s proposal: extend the prlimit API, can it works for capacity_min?
what’s the most convenient “regulare API”?

Discussion
Main controversial points (3/3)

Message-ID: <20170324150046.GA21525@htj.duckdns.org>

11 © ARM 2017

Backup Slides

12 © ARM 2017

CPUs keep track of capacity constraints
▪ for all RUNNABLE tasks
▪ using RBTrees to keep task_struct

ordered

Tasks ordered based on capacity
constraints enforced by their CGroups

▪ simple accounting and aggregation mechanism
▪ insertion/removal ops just at enqueue/dequeue time

free support for tasks migrations between CPUs/CGroups

Main features
▪ capacity clamping tracked by the core scheduler

support for both FAIR and RT tasks
▪ No limitations on number of “boost groups”

SchedTune v3
Implementation Details

13 © ARM 2017

Functional validation performed on
JUNO R2 boards

▪ using this rt-app synthetic scenario

10x10% background tasks
 capacity_max=20%
 cpumax=0x4

 1x10% top-app task
 capacity_min=80%
 cpumax=0x4

SchedTune v3: Capacity Clamping Validation

[1] https://gist.github.com/derkling/5409bae8e358ba92da3a5a10921f6d59

CPU1 Clamped Utilization

CPU2 Clamped Utilization

https://gist.github.com/derkling/5409bae8e358ba92da3a5a10921f6d59

14 © ARM 2017

SchedTune v3: Shares Benefits on Latencies

Fig.1 - Shares: BG=1024, TA=1024 Fig.2 - Shares: BG=2, TA=1024

Fig.3 - Shares: BG=2, TA=10K

15 © ARM 2017

Provide a simple, central tunable for
energy saving vs performance boosting

Bias OPP selection and tasks placement
▪ provide schedutil with behaviours similar to other governors

e.g. interactive, performance
▪ support EAS to trade-off energy saving for performance boosting

Fosters the collection of sensible information from informed run-times
▪ to support better task scheduling decisions
▪ by providing a simple yet effective API to middleware like Android

SchedTune: Design Goals

16 © ARM 2017

RFC v2 posted on LKML [1]

▪ supporting only OPP boosting but based on schedutil integration

Full solution available in ACK v3.18 [2]

▪ supporting task biasing via EAS integration
in find_best_target() for !is_big_little targets

▪ small refinements to support either PELT or WALT utilization signal
▪ using additional attribute to better support latency sensitive tasks

Further fixes and improvements in MSM v3.18 [3]

▪ available in partner’s msm-google kernel tree
▪ improved performance index definition

SchedTune: Current Status (i.e. what’s in use)

[1] https://lkml.org/lkml/2016/10/27/503
[2] https://android.googlesource.com/kernel/common/+/android-3.18

[3] https://android.googlesource.com/kernel/msm/+/android-msm-marlin-3.18-nougat-mr1-eas-experimental

https://lkml.org/lkml/2016/10/27/503
https://android.googlesource.com/kernel/common/+/android-3.18
https://android.googlesource.com/kernel/msm/+/android-msm-marlin-3.18-nougat-mr1-eas-experimental

17 © ARM 2017

Performance index discounting for potential delay sources

Perf_idx = SpeedUp_idx − Delay_idx

▪ estimate of “how fast” the task will run
SpeedUp_idx = cpu_boosted_capacity − task_util

▪ discount all the latency treats (e.g. co-scheduling, Hi-Prio tasks, blocked-load, IRQ pressure,
etc.)

Delay_idx = 1024 * (cpu_util - task_util) / cpu_util [1]

SchedTune: Improved Performance Index

[1] cpu_util includes task’s utilization

Next_cpu preferred depending on:
- prev_cpu utilization and blocked load
- boosted CPU’s capacity

10% tasks waking up, 10% boost (~90 utilization margin)

18 © ARM 2017

Introduction of a new CGroup controller
▪ the boost value is affecting the availability of CPU's bandwidth
▪ Tejun&PaulT proposed to integrate this concept into the existing CPU controller

this should support a more coherent view on what is the status of the CPU resource

Enforcing (by design) a "flat hierarchy" of boosted tasks
▪ a flat hierarchy does not match the expected "generic behaviors" for CGroup interface
▪ such a controller cannot be easily extended to support CGroup v2 configuration

The request for a single knob has been kind-of demoted
▪ some implementation details currently do not allow to grant the required boost values
▪ boosting support is really required only for mid-to-big deltas

e.g. small tasks with big boosting, but not the big tasks with small deltas
a threshold based implementation could be potentially good enough

SchedTune: Main Complains from LKML/LPC [1]

[1] https://lkml.org/lkml/2016/11/25/342

https://lkml.org/lkml/2016/11/25/342

19 © ARM 2017

Complete task placement biasing
▪ remap prefer_idle to a suitable check condition on cpu.shares value
▪ the performance index will not be added in the first instance

Integrate v3 (possibly beside v2) in EAS r1.3 for ACK 4.4

Complete the AOSP userspace integration
▪ refactor/cleanup current sched_policy[1]

▪ extends full task classes to cpuctl
BACKGROUND
SYSTEM_BACKGROUND
FOREGROUND
TOP_APP

▪ update both cpuctl and cpuset at each
policy setting/updating

SchedTune v3: Works in Progress

▪ android/platform/system/core
rootdir/init.rc
libcutils/sched_policy.c

▪ android/platform/frameworks/av
media/audioserver/audioserver.rc
media/mediaserver/mediaserver.rc
camera/cameraserver/cameraserver.rc

▪ android/platform/frameworks/base
services/core/java/com/android/server/UiThread.java
cmds/bootanimation/bootanim.rc
core/java/android/os/Process.java

[1] https://android.googlesource.com/platform/system/core/+/master/libcutils/sched_policy.cpp

https://android.googlesource.com/platform/system/core/+/master/libcutils/sched_policy.cpp

20© ARM 2017

Experiment with CFS bandwidth controller
▪ investigate the possibility to replace the usage of cpusets with a proper and more complete

configuration of the CPU bandwidth controller
▪ should optimize parallelization of background tasks, especially when there are not

foreground and/or top apps running

Using per-app CGroups instead of task classes
▪ this is expected to reduce overheads related to moving tasks around
▪ better match the most “classical” usage of the CGroup interface, i.e.

“Organize Once and Control [1]”

SchedTune v3: Future Advanced Topics

[1] http://lxr.linux.no/linux+v4.10.1/Documentation/cgroup-v2.txt#L361

http://lxr.linux.no/linux+v4.10.1/Documentation/cgroup-v2.txt#L361

21 © ARM 2017

Similarly to how SE’s priority defines the “weight” of a TG, and thus its slice time

SchedTune v3: How Shares Works?

▪ Used to repartition the
scheduling latency (SL)

/proc/sys/kernel/sched_latency_ns
10ms by default in AOSP

▪ A quota of SL, proportional to its
share, is assigned to each SE

never smaller than:
sched_min_granularity_ns

▪

