
Schedutil and
SCHED_DEADLINE

OSPM-summit 17

Juri Lelli - juri.lelli@arm.com
Claudio Scordino - claudio@evidence.eu.com

mailto:juri.lelli@arm.com
mailto:claudio@evidence.eu.com

Frequency/CPU scaling
● Based on Luca’s bandwidth reclaiming (GRUB)
● Key idea: set CPU frequency based on rq’s active bandwidth (GRUB-PA)
● Reservation runtime needs scaling according to frequency and CPU max

capacity
● for freq., use the ratio between max and current capacity to enlarge the

runtime granted to a task at admission control time:
 scaled_runtime = original_runtime * (max_cap / curr_cap)

● similarly for CPU, but using the ratio between biggest and current CPU
capacity

Frequency scaling (example)
HiKey board has 5 Operating Performance Points (OOPs)

Running a task inside a 12ms/100ms reservation at min freq. means

scaled_runtime = 12ms * (1024/178) ~= 69ms

Frequency (MHz) Capacity % w.r.t. max

208 178 17

432 369 36

729 622 61

960 819 80

1200 1024 100

Frequency scaling (example cont.)
10ms/100ms task inside a 12ms/100ms reservation (at max freq)

10ms/100ms task inside a 12ms/100ms reservation (at min freq)

20ms/100ms (bad) task inside a 12ms/100ms reservation (at min freq)

Driving frequency selection
● scaling clock frequency, while meeting tasks’ requirements (deadlines)
● scheduler driven CPU clock frequency selection

○ schedutil cpufreq governor
SCHED_NORMAL - uses util_avg (PELT)
SCHED_FIFO/RR and SCHED_DEADLINE - go to max!

● with Luca’s bandwidth reclaiming
○ rq->dl.running_bw as SCHED_DEADLINE per-CPU util contribution (sum with others)
○ move CPU frequency selection triggering point (where running_bw actually changes)

● allow sugov kworker thread(s) to be SPECIAL (always preempt) - for
!fast_switch_enabled drivers

Current design choices
● rq’s bandwidth used for freq. scaling:

1. Active bandwidth (running_bw):
■ More aggressive

2. Total bandwidth (this_bw):
■ It also accounts for inactive tasks (i.e. more conservative)
■ Could even work on current DL providing that we add rq’s bandwidth info

(Luca’s patch 0007)

● freq. used for runtime accounting:
1. Current value when calling sched_class->update_curr() (inaccurate)
2. Notification mechanism to inform DL of frequency changes (overhead)
3. Prevent CFS from changing freq. when there is DL load (inefficient)

SCHED_FLAG_SPECIAL, yuck!
● Bandwidth Inheritance on a busy I2C/SPI bus (mutexes)
● Make kworker go away - freq transitions in atomic context
● Some HW might work as “fire and forget”

○ what about HW that can’t ?
set new voltage, wait for the voltage to settle down, set new clock freq. (might take a while)

● SW rework seems a daunting task :(
○ drivers use mutexes - easy to fix
○ clk framework uses mutexes - fixable/avoidable?
○ notifiers - some other subsys. rely on them, e.g. thermal
○ regulators use mutexes - hard to rework?

